THE WEIGHTED GENERALIZED INVERSE OF A LINEAR OPERATOR AND REGULARIZATION

MAN-SUK SONG

1. Introduction

In this paper we introduce the weighted generalized inverse of a linear operator in a general Hilbert space setting and the method of regularization to obtain an approximate solution to an ill-posed constrained minimization problem.

Let X and Y be (real or complex) spaces with $\langle .,. \rangle$, $\| \cdot \|$ denoting the inner product and the norm for both. Let A be a bounded linear operator from X into Y, and let A^* denote the adjoint of A, i.e., for all $x \in X$, $y \in Y$,

$$\langle Ax, y \rangle = \langle x, A^*y \rangle.$$

Let R(A) and N(A) denote the range and the null space of A respectively. For any subspace S, we denote the orthogonal complement of S by S^{\perp} and the closure of S by \overline{S} . It is well known [9] that

$$X=N(A) \oplus N(A)^{\perp}$$

$$Y=N(A^*) \oplus N(A^*)^{\perp}$$

$$\{\overline{R(A)}\}^{\perp}=N(A^*), \ \overline{R(A^*)}=N(A)^{\perp}$$

For a given $b \in Y$, an element $u \in X$ is called a *least squares solution* of the operator equation

$$Ax = b$$

if $||Au-b|| \le ||Ax-b||$ for all $x \in X$.

Among least squares solutions an element \bar{u} of minimal norm is called a pseudosolution or a best approximate solution of (1), i.e., $\|\bar{u}\| \le \|u\|$ for all least squares solutions u. For each $b \in R(A) + R(A)^{\perp}$, the set of all least squares solutions of (1) is non-empty, closed, and convex. Hence it has a unique element \bar{u} of minimal norm. The generalized

inverse of A, denoted by A^{\dagger} , is defined as the operator which assigns to each $b \in R(A) + R(A)^{\perp}$, the unique least squares solution of minimal norm of the equation (1). Then A^{\dagger} is a linear operator from $R(A) + R(A)^{\perp}$ into X. If R(A) is closed, the domain of A^{\dagger} , $D(A^{\dagger})$, becomes the whole space Y and A^{\dagger} is bounded. But A^{\dagger} is unbounded [and $R(A) + R(A)^{\perp} \neq Y$ when R(A) is not closed.

The operator equation (1) is said to be well-posed (relative to the spaces X and Y) if for each $y \in Y$ it has a unique pseudosolution which depends continuously on y; otherwise the equation is said to be ill-posed.

The following statements are equivalent [6]:

- (a) The operator equation (1) is well-posed in (X, Y).
- (b) A has a colsed range in Y.
- (c) A^+ is a bounded linear operator on Y into X.

Let L be a bounded linear operator from X into Z, where Z is a third Hilbert space. We assume that the range of L, R(L), is closed in Z, but the range of A, R(A), is not necessarily closed in Y. For a given y in the domain of A^{\dagger} , let

(2)
$$S_{y} = \{u \in X : ||Au - y||_{Y} = \inf ||Ax - y||_{Y}, x \in X\}.$$

Then we consider the following minimization problem: Find an element $w \in S_y$ such that

(3)
$$||Lw||_Z = \inf \{||Lu||_Z : u \in S_v\}.$$

This problem (2)-(3) is generally known as a constrained minimization problem with constraint operator L.

Since for any $u \in S_y$, $u = A^{\dagger}y + v$ for fome $v \in N(A)$, the problem (3) is equivalent to

$$\inf_{u \in S_y} \|Lu\| = \inf_{v \in N(A)} \|L(A^+y + v)\| = \inf_{u \in LS_y} \|u\|.$$

Noting that LS_y is a translate of the subspace LN(A), the problem (2)-(3) has a solution for every $y \in D(A^{\dagger})$ if and only if LN(A) is closed, and the solution is unique if and only if $N(A) \cap N(L) = \{0\}$ [6]. It is not difficult to show that LN(A) is closed if and only if N(A)+N(L) is closed. Throughout this paper, we assume that $N(A) \cap N(L) = \{0\}$ and N(A)+N(L) is closed, i.e., that the constrained minimization problem (2)-(3) has a solution for each $y \in D(A^{\dagger})$ and

the solution is unique.

2. Weighted generalized inverse

Let

$$[u, v] := \langle Au, Av \rangle_Y + \langle Lu, Lv \rangle_Z \text{ for } u, v \in X$$

and

$$M = \{x \in X : L^*Lx \in N(A)^{\perp}\}.$$

Then the following proposition is an immediate consequence of the definition of [.,.] and the assumption that $N(A) \cap N(L) = \{0\}$.

Proposition 1. (a) (4) defines an inner product in X.

(b) M is a closed subspace of X and is orthogonal complement of N(A) with respect to the new inner product (4), i.e.,

$$X = N(A) \oplus_L M$$

where \bigoplus_L denotes the orthogonal decomposition with respect to [.,.].

Let X_L denote the space X with the new inner product [.,.].

THEOREM 2. An element $w \in X$ is a solution to the problem (2)-(3) if and only if $A^*Aw = A^*y$ and $L^*Lw \in N(A)^{\perp}$.

Proof. See, for example, Nashed [6].

According to the Theorem 2, the problem of constrained minimization problem (2)-(3) is equivalent to finding an element $w \in M$ such that A*Aw=A*y. Thus the solution w is the least squares solution of X_L -minimal norm of the equation (1). Let A_L^{\dagger} denote the map induced by $y \rightarrow w$ and call it the weighted generalized inverse of A. Then the weighted generalized inverse of A relative to the decompositions

$$X=N(A)\oplus_L M$$
 and $Y=\overline{R(A)}\oplus R(A)^{\perp}$.

The relation between A^{\dagger} and A_L^{\dagger} is

$$A_L^{\dagger} = (2I - A^{\dagger}A - U)A^{\dagger}$$

where U is the projector of X onto N(A) along M [6], [8].

3. Regularization. Existence and uniqueness of the regularized solution

When the range of A is closed, the problem (2)-(3) is well posed. Hence our interest is in the case that the range of A is not closed and therefore the problem is ill-posed. As usual for the ill-posed problems, we regularize it by a family of stable minimization problems.

Let W be the product space of Y and Z with the usual inner product:

$$W = Y \times Z,$$

$$\langle (y_1, z_1), (y_2, z_2) \rangle_W = \langle y_1, y_2 \rangle_Y + \langle z_1, z_2 \rangle_Z$$

for $y_1, y_2 \in Y$ and $z_1, z_2 \in Z$. From now on we drop the subscripts X, Y and Z for the inner product and norms whenever the meaning is clear from the context.

For $\alpha > 0$, let C_{α} be a linear operator from X into W defined by

$$C_{\alpha}x = (Ax, \sqrt{\alpha}Lx)$$
 for $x \in X$.

LEMMA 3. For $\alpha>0$, the range of C_{α} , $R(C_{\alpha})$, is closed if R(L) and A(N(L)) are closed.

COROLLARY 4. Suppose that R(L) and A(N(L)) are closed, and $N(A) \cap N(L) = \{0\}$. Let $\overline{b} = (y, 0)$ be an element in W. Then for $\alpha > 0$, the operator equation $C_{\alpha}x = \overline{b}$ is well posed.

By the Corollary 4, the operator C_{α} has the bounded generalized inverse C_{α}^+ defined on all of W for $\alpha > 0$ when A(N(L)) is assumed to be closed in addition. For the given $\bar{b} \in W$, let U_{α} denote the unique least squares solution of minimal norm of the equation $C_{\alpha}x = \bar{b}$ for each $\alpha > 0$ i.e., $U_{\alpha} = C_{\alpha}^+ \bar{b}$.

From the definition of C_{α} and inner product of W, we get

$$C_{\alpha}x - \overline{b} = (Ax - y, \sqrt{\alpha}Lx)$$

and

(5)
$$||C_{\alpha}x - \overline{b}||^2 = ||Ax - y||^2 + \alpha ||Lx||^2.$$

Let us write

(6)
$$J_{\alpha}(x) = ||Ax - y||^2 + \alpha ||Lx||^2.$$

THEOREM 5. Let $\alpha>0$. An element x_{α} in X minimizes the quadratic functional $J_{\alpha}(x)$ if and only if

$$(A^*A + \alpha L^*L)x_\alpha = A^*y.$$

Proof. It is easy and is omitted.

By Theorem 5 and (5), we conclude that $U_{\alpha}=C_{\alpha}^{+}\bar{b}$ is the unique minimizer of the quadratic functional $J_{\alpha}(x)$ and also the unique solution of the equation (7), which is equivalent to $C_{\alpha}^{*}C_{\alpha}x=C_{\alpha}^{*}\bar{b}$. Throughout the paper we assume that AN(L) is closed. Then $R(C_{\alpha})$ is closed for $\alpha>0$ and in particular $R(C_{1})$ is closed. Therefore C_{1} has a bounded inverse on $R(C_{1})$ and hence there exist constants m_{1} and m_{2} such that $0< m_{1} \le m_{2} < \infty$ and

(8)
$$m_1||x|| \le ||C_1x|| \le m_2||x||$$
 for all $x \in X$.

We denote the new norm derived by $||C_1x||$ by $||x||_L$ i. e., $||x||_{L^2} = ||Ax||^2 + ||Lx||^2$.

PROPOSITION 6. Suppose that R(L) and LN(A) are closed.

- (a) If A(M) is closed, then $R(C_{\alpha})$ is closed.
- (b) If R(A) is closed, then $R(C_a)$ is closed.
- (c) If N(L) is finite dimensional, then N(L)+N(A) an $R(C_{\alpha})$ are closed.

REMARK. By Lemma 3 and Proposition 6, if either N(L) or M is finite dimensional, then the operator equation (7) is well-posed.

4. Convergence: $\{U_{\alpha}\} \rightarrow A^{\dagger}_{L} y$.

In this section we show that the regularized solution U_{α} converges to the solution $A^{\dagger}_{L}y$ as α tends to 0.

LEMMA 7. (a) $w \in S_y$ is the solution of the problem (2)-(3) if and only if $w \in M$ and $J_0(w) \leq J_0(x)$ for all $x \in X$ where $J_0(x) = ||Ax - y||^2$. (b) U_α is the solution of (7) if and only if $J_\alpha(U_\alpha) \leq J_\alpha(x)$ for all $x \in X$.

LEMMA 8. Let $\alpha > 0$. Then

$$||LU_{\alpha}|| \leq ||Lw||$$
 and $||AU_{\alpha}|| \leq ||Aw||$

where $w = A^{\dagger}_{L}y$.

Proof. Since $J_{\alpha}(U_{\alpha}) \leq J_{\alpha}(x)$ for any $x \in X$, we get $||AU_{\alpha}-y||^2 + \alpha ||LU_{\alpha}||^2 \leq ||Aw-y||^2 + \alpha ||Lw||^2$. By Lemma 7-(a), $||Aw-y||^2 \leq ||AU_{\alpha}-y||^2$ and we get the first inequality. Since $A^*Aw = A^*y$, $\langle A^*Aw, w \rangle = \langle A^*y, w \rangle$. Similarly, $A^*AU_{\alpha} + \alpha L^*LU_{\alpha} = A^*y$ implies $\langle A^*AU_{\alpha}, U_{\alpha} \rangle + \alpha \langle L^*LU_{\alpha}, U_{\alpha} \rangle = \langle A^*Ay, U_{\alpha} \rangle$. Using these equations, we get

(9)
$$J_0(w) = ||Aw - y||^2 = ||Aw||^2 - 2\langle w, A^*y \rangle + ||y||^2 = -||Aw||^2 + ||y||^2.$$

(10)
$$J_0(U_{\alpha}) = ||AU_{\alpha} - y||^2 = ||AU_{\alpha}||^2 - 2\langle U_{\alpha}, A^*y \rangle + ||y||^2$$
$$= -||AU_{\alpha}||^2 - 2\alpha ||LU_{\alpha}||^2 + ||y||^2.$$

By the minimizing property of w, $J_0(w) \leq J_0(U_\alpha)$ which implies $-\|Aw\|^2 + \|y\|^2 \leq -\|AU_\alpha\|^2 - 2\alpha\|LU_\alpha\|^2 + \|y\|^2$. Now the second inequality follows from this.

LEMMA 9. For
$$\alpha > 0$$
,

$$\lim_{\alpha \to 0} A^*AU_{\alpha} = A^*y.$$

LEMMA 10. The set $\{U_a\}$ is bounded in X and has a weakly convergent subsequence, say $\{U_a\}$.

LEMMA 11. Suppose $\{U_{\beta}\}$ converges weakly to \overline{w} . Then $\overline{w} \in M$ and $\overline{w} = w$.

Proof. For each $\beta > 0$, $A*AU_{\beta} - A*y = A*(AU_{\beta} - y) = -\beta L*LU_{\beta}$. This implies that $L*LU_{\beta}$ belongs to R(A*) which is contained in $N(A)^{\perp}$. Hence $\langle v, L*LU_{\beta} \rangle = 0$ for each $v \in N(A)$. By the weak convergence of $\{U_{\beta}\}$, we have

$$[v, \overline{w}] = \lim_{\beta \to 0} [v, U_{\beta}] = \lim_{\beta \to 0} \{ \langle A^*Av, U_{\beta} \rangle + \langle v, L^*LU_{\beta} \rangle \} = 0$$

for each $v \in N(A)$. Therefore \overline{w} is in M. To prove the second statement, we show that \overline{w} minimizes $J_0(x)$ and by uniqueness of w we get the desired result. It suffices to show that $\langle A^*A\overline{w}, x \rangle = \langle A^*y, x \rangle$ for each $x \in X$. For each fixed x, by the weak convergence of $\{U_\beta\}$ and the boundedness of A^*A and L^*L we have

$$\lim_{\beta \to 0} \left\{ \left\langle A^*AU_\beta, x \right\rangle + \beta \left\langle L^*LU_\beta, x \right\rangle \right\} = \left\langle A^*y, x \right\rangle.$$

Therefore, we get $\langle A^*A\bar{w}, x \rangle = \langle A^*y, x \rangle$.

LEMMA 12. Suppose $0 < \alpha' < \alpha$. Then

$$||LU_{\alpha}|| \leq ||LU_{\alpha'}||$$

and

$$||AU_{\alpha}||^2 - ||AU_{\alpha'}||^2 \leq 2(\alpha ||LU_{\alpha'}||^2 - \alpha ||LU_{\alpha}||^2).$$

LEMMA 13. Suppose that the subsequence $\{U_{\beta}\}$ converges strongly to w. Then $\{U_{\alpha}\}$ converges to w.

Proof. Since

$$\|U_{\beta} - w\|_{L} = (\|AU_{\beta} - Aw\|^{2} + \|LU_{\beta} - Lw\|^{2})^{1/2}$$

$$\geq \left(\frac{1}{2}\right)^{1/2} (\|AU_{\beta} - Aw\| + \|LU_{\beta} - Lw\|)$$

and $||U_{\beta}-w||_L \rightarrow 0$ as $\beta \rightarrow 0$, we get

$$(11) $||AU_{\varepsilon} - Aw|| \rightarrow 0$$$

$$||LU_{\beta}-Lw|| \to 0.$$

By Lemma 11, $\{LU_{\alpha}\}$ is monotonically increasing sequence as $\alpha \to 0$ and thus by (12), $\{LU_{\alpha}\}$ converges to Lw. Let $0 < \beta < \alpha$. Then in the following inequality

$$||AU_{\alpha}-Aw|| \leq ||AU_{\alpha}-AU_{\beta}|| + ||AU_{\beta}-Aw||,$$

the second term on the right hand side tends to zero by (11). By Lemm 9, $\{AU_{\alpha}\}$ converges weakly and by Lemma 12, $\{||AU_{\alpha}||\}$ converges to ||Aw||. Hence $\{AU_{\alpha}\}$ converges to Aw. Thus the first term on the right hand side of the above inequality tends to zero. Therefore

$$||U_{\alpha}-w||_{L} \leq ||AU_{\alpha}-Aw|| + ||LU_{\alpha}-Lw|| \rightarrow 0$$
 as $\alpha \rightarrow 0$.

By the equivalence of norms, $\{U_{\alpha}\}$ converges to w in X.

THEOREM 14. For $\alpha > 0$ and a given $y \in Y$,

$$\lim_{\alpha\to 0} U_{\alpha} = A^{\dagger}_{L} y.$$

Proof. Since $\{U_{\beta}\}$ converges to w weakly, we have $||w||_{L} \leq \lim_{\beta \to 0} ||U_{\beta}||_{L}$. Combining this and Lemma 7, we get $\lim_{\beta \to 0} ||U_{\beta} - w||_{L} = 0$. Then by Lemma 12, $\{U_{\alpha}\}$ converges to w in X. that is,

$$\lim_{\alpha\to 0} ||U_{\alpha} - A_L^{\dagger} y|| = 0.$$

We have shown that under the assumption that $N(A) \cap N(L) = \{0\}$, R(L) and AN(L) are closed, the operator equation (7) provides a unique solution U_{α} which depends continuously on y for each $\alpha > 0$, and $U_{\alpha} \rightarrow A_L^{\dagger} y$ as $\alpha \rightarrow 0$. Therefore $\{A^*A + \alpha L^*L\}^{-1}A^*\}$ is a family of regularizing operators for the constrained minimization problem (2)–(3) in the sense of Tikhonov [10].

References

- 1. A.B. Bakusinskii, Ageneral method of constructint regularizing algorithms for a linear ill-posed equation in Hilbert space, USSR Comp. Math. Math. Phys. 7(1967), 279-287.
- 2. L. Elden, A note on weighted pseudo inverses with applications to the regularization of Fredholm integral equations of the first kind, Report Lith-Mat-R-75-11, Dept. of Math., Linköpig University, 1975.
- 3. J.N. Franklin, On Tikhnov's method for ill-posed problems, Math. Comp. 28 (1974), 889-907.
- 4. C. W. Groetsch, Generalized inverses of linear operators, Dekker, New York, 1977.
- 5. C.W. Groetsch, The theory of Tikhonov regularization for Fredholm equation of the first kind, Research Notes in Mathematics, Pitman Advanced Publishing Program, Boston, 1984.
- M. Z. Nashed, Aspects of generalized inverses in analysis and regularization, 193-244, Generalized Inverses and Applications, ed. by M.Z. Nashed, Academic Press, New York, 1976.
- M. Z. Nashed, e. d., Generalized inverses and applications academic press, New York, 1976.
- 8. M.Z. Nashed and G.F. Votruba, A Unified operator theory of generalized inverses, pp. 1-109, Generalized Inverses and Applications, e.d. by M.Z. Nashed, Academic Press, New York, 1976.
- A. E. Taylor, Introduction to functional analysis, John-Wiley & Sons, New York, 1958.
- A. N. Tikhonov, Solution of incorrectly formulated problems and the regularization method, Soviet Math. Dokl., 4(1963), 1035-1038.
- 11. A. N. Tikhonov, Regularization of incorrectly posed problems, Soviet Math. Dokl. 4 (1963) 1624-1627.

Department of Computer Science Yonsei University Seoul 120, Korea