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THE WEIGHTED GENERALIZED INVERSE OF A
LINEAR OPERATOR AND REGULARIZATION

MAN-SUK SONG

1. Introduction

In this paper we introduce the weighted generalized inverse of a lin-
ear operator in a general Hilbert space setting and the method of regu-
larization to obtain an approximate solution to an ill-posed constrained
minimization problem.

Let X and Y be (real or complex) spaces with <.,.), || - || denoting
the inner product and the norm for both. Let A be a bounded linear
operator from X into Y, and let A* denote the adjoint of A, i.e., for
all z€X, yevy,

(Axz, y> =<.’L‘, A*y>-

Let R(A) and N(A) denote the range and the null space of A respec-

tively. For any subspace S, we denote the orthogonal complement of
by St and the closure of § by 3. It is well known [9] that

X=N(A)DON(A)*
Y=N(A*) DN(A*)*
{R(A)} +=N(A*), R(A*)=N(4)*

For a given b€ Y, an element <X is called a least squares solution
of the operator equation

(1) Azx=pb
if |JAu—b||Z1|Az—b]| for all z€X.
Among least squares solutions an element # of minimal norm is called
a pseudosolution or a best approximate solution of (1), i.e., [|lal|<]ul|
for all least squares solutions . For each #€R(A)+R(A)*, the set of

all least squares solutions of (1) is non-empty, closed, and convex.
Hence it has a unique element # of minimal norm. The generalized
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inverse of A, denoted by At, is defined as the operator which assigns
to each b€ R(A) +R(A)+, the unique least squares solution of minimal
norm of the equation (1). Then A' is a linear operator from R(A)--
R(A)* into X. If R(A) is closed, the domain of AT, D(A'), becomes
the whole space Y and A' is bounded. But A' is unbounded fand R
(A)+R(A)L+Y when R(A) is not closed.

The operator equation (1) is said to be well-posed(relative to the
spaces X and Y) if for each y= Y it has a unique pseudosolution which
depends continuously on y; otherwise the equation is said to be li-
posed.

The following statements are equivalent [6]:

(a) The operator equation (1) is well-posed in (X, Y).
(b) A has a colsed range in Y.
(c) A" is a bounded_ linear operator on Y into X.

Let L be a bounded linear operator from X into Z, where Z is a
third Hilbert space. We assume that the range of L, R(L), is closed in
Z, but the range of A, R(A), is not necessarily closed in Y. For a
given y in the domain of ATf, let

@  S=weX: [Au—slly=inflAz—sly, s X}.

Then we consuier the followmg minimization problem: Find an element
weS, such that

&) | Lwllz=inf {|Lallz : z€S,}.

This problem (2)-(3) is generally known as a constrained minimization
problem with constraint operator L. ‘

Since for any z&S,, u=Aty+v for fome v N(A), the problem(3)
is equivalent to

inf ||Lu||=inf [|L(A*y+ov)l|=inf |l4].
w€Sy vEN(A) weLS,

Noting that LS, is a translate of the subspace LN(A), the problem
(2)-(3) has a solution for every y&€D(A') if and only if LN(A) is
closed, and the solution is unique if and only if N(A) NN(L)= {0}
[6]. It is not difficult to show that LN(A) is closed if and only if
N(A)+N(L) is closed. Throughout this paper, we assume that N(A4)
NANL)=1{0} and N(A)+N(L) is closed, i.e., that the constrained
minimization problem (2)-(8) has a solution for each yeD(A') and
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the solution is unique.

2. Weighted generalized inverse
Let
@ [u, v]:={Au, Avdy+<{Lu, Lvdz for u,veX
and
M={ze€X : L*LzN(A)'}.

Then the following proposition is an immediate consequence of the de-
finition of [.,.] and the assumption that N(A) N N{(L) = {0}.

PROPOSITION 1. (a) (4) defines an inner product in X.
(b) M is a closed subspace of X and is orthogonal complement of N(A)
with respect to the new inner product (4), i.e.,

X=N(A)D.M

where @ denotes the orthogonal decomposition with respect to [.,.].
Let X, denote the space X with the new inner product [.,.].

THEOREM 2. An element weEX is a solution to the problem (2)-(3)
if and only if A*Aw=A*y and L*Lwe N(A)".

Proof. See, for example, Nashed [6].

According to the Theorem 2, the problem of constrained minimlzation
problem (2)-(3) is equivalent to finding an element wE€M such that
A*Aw=A*y. Thus the solution w is the least squares solution of X -
minimal norm of the equation (1). Let Ay! denote the map induced
by y—w and call it the weighted generalized inverse of A. Then the
weighted generalized inverse A;! is the generalized inverse of A rela-
tive to the decompositions

X=NA)@ M and Y=R(A)DR(A)"™
The relation between A' and A.' is
Apt=0QI—-AtA—U) At
where U is the projector of X onto N(A) along M [6], [8].
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3. Regularization. Existence and uniqueness of the regularized
solution ‘

When the range of A is closed, the problem (2)-(3) is well posed.
Hence our interest is in the case that the range of A is not closed
and therefore the problem is ill-posed. As usual for the ill-posed
problems, we regularize it by a family of stable minimization problems.

Let W be the product space of ¥ and Z with the usual inner pro-
duct:

W=YXZ,
(1, 205 (32, 22) dw =<y, y20y +<21, 2202

for y;,y2€Y and 2;,22€Z. From now on we drop the subscripts X, Y
and Z for the inner product and norms whenever the meaning is clear
from the context.

For >0, let C, be a linear operator from X into W defined by

C.,x=(Az, vaLz) for z&X.
LEMMA 3. For >0, the range of C,, R(C,), is closed if R(L)
and A(N(L)) are closed.

COROLLARY 4. Suppose that R(L) and A(N(L)) are closed, and
N NN@L)=1{0}. Let 5=1{(y,0) be an element in W. Then for a>
0, the operator equation C,x=0 is well posed.

By the Corollary 4, the operator C, has the bounded generalized in-
verse C,* defined on all of W for >0 when A(N(L)) is assumed
to be closed in addition. For the given 3€W, let U, denote the

unique least squares solution of minimal norm of the equation C,z=3
for each a>0 i.e., U,=C,"5.
From the definition of C, and inner product of W, we get

C,x—b=(Az—y, valLz)
and
(5) [|Coz —bl>=||Az —|[>+al| Lz ||
Let us write
(6) Jo(z) =||Az—y|P+all L]
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THEOREM 5. Let a>0. An element x, in X minimizes the quadratic
Sfunctional J,(z) if and only if

) (A*A+aL*L)z,= A*y.
Proof. It is easy and is omitted.

By Theorem 5 and (5), we conclude that U,=C,"6 is the unique
minimizer of the quadratic functional J,(z) and also the unique solution
of the equation (7), which is equivalent to C,*C,z=C,*b. Throughout
the paper we assume that AN(L) is closed. Then R(C,) is closed for
a>0 and in particular R(C,) is closed. Therefore C; has a bounded
inverse on R(C;) and hence there exist constants m; and m, such that
0<lmy<my< oo and

(8) m|lz| < ||Cixl| S myllzl| for all zeX.

We denote the new norm derived by ||Ciz|| by llz|l; i.e., [zl 2=]lAzli®
+| Lz

PROPOSITION 6. Suppose that R(L) and LN(A) are closed.

(a) If A(M) is closed, then R(C,) is closed.

(b) If R(A) is closed, then R(C,) is closed.

(¢) If N(L) is finite dimensional, then N(L)+N(A) an R(C,) are
closed.

ReMARK. By Lemma 3 and Proposition 6, if either N(L) or M is
finite dimensional, then the operator equation (7) is well-posed.

4. Convergence: {U,}—A',y.

In this section we show that the regularized solution U, converges
to the solution At'.y as a tends to 0.

LEMMA 7. (a) wE€S, is the solution of the problem (2)-(3) if and
only if weEM and Jo(w) £Jy(z) for all z€X where Jy(z) =||Az—y|.
(6) U, is the solution of (7) if and only if J,(U)=J,(z) for all
zeX.

LemMA 8. Let a>0. Then
LU = |Lwl| and ||AUL|< || Aw||
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where w=ATpy.

Proof. Since J,(U)=J,(z) for any z€X, we get ||[AU,—y|]®?+
allLU,|P=]|Aw—y|P+al|Lw|® By Lemma 7-(a), ||Aw—yl2=[|AU,—
y]|?2 and we get the first inequality. Since A*Aw=A%y, {A*Aw,w)=
(A*y, w). Similarly, A*AU,+aL*LU,=A*y implies {A*AU,, U,)+
all*LU,, U,y={A*Ay, U,y. Using these equations, we get

(9) Jo(w) =l Aw—yl|*= || Aw|[*—2{w, A%y) +|ly|l?
=~ [l Aw]?+|ly[l*.
(10) Jo(Un) =l| AU, — 3P =[| AU —2{U,, A*y) +|Iy|?

=—[[AU|P—2al LU, |P+|ly11>

By the minimizing property of w, Jo(w)=Jy(U,) which implies
— | Awl|l2+ Iyl < — 1| AU, |12 —2al|LU,|[2+|ly]12. Now the second inequality
follows from this.

LEMMA 9. For a>0,
ngl A*AU, =A%y,
LEMMA 10. The set {U,} is bounded in X and has a weakly conver-
gent. subsequence, say {Ug}.

LEMMA 11. Suppose {Ug} converges weakly to ®. Then
wEM and W=w.

Proof. For each >0, A*AU,—A*y=A*(AUz—y)=—BL*LUj.
This implies that L*LU; belongs to R(A*) which is contained in
N(A)L. Hence {v, L*LU;)=0 for each v&N(A). By the weak conver-
gence of {Ug}, we have

(v, @] =1§H(1,[v, Upl=lim {<A*Av, Ug) +<v, L*LUp)} =
- B
for each veN(A). Therefore @ is in M. To prove the second state-
ment, we show that @ minimizes Jy(z) and by uniqueness of w we get
the desired result. It suffices to show that {A*Aw®, z)={A*y, =) for each

z€X. For each fixed z, by the weak convergence of {Ug and the
boundedness of A*A and L¥*L we have

E.Igl {(A*AUg, z) +B{L*L Uy, z)} =<{A*y, z).

Therefore, we get {A*A®, z)={A*y, z).
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LemMmA 12. Suppose 0<Za’<a. Then
HLUa” § “LUa’”
and

AU =AU =2(all LU, |12 —allLU,|1).

LEMMA 13. Suppose that the subsequence {Ug} converges strongly to
w. Then {U,} converges to w.

Proof. Since
WU; —wl L= (|AUs— Aw||?+|| LU, — Lw}||?) 1/2

g(—%—)1/2(|]AUﬁ—Awl|+|lLU,s—Lw||)

and ||Ug—w|/,—0 as $—0, we get

68 AU, — Awl|—0
(12) I|L Uy — Luw|| -0

By Lemma 11, {LU,} is monotonically increasing sequence as a—0 and
thus by (12), {LU,} converges to Lw. Let 0<8<a. Then in the
following inequality

AU, — Aw|| = |AU, — AUl +1|AU — Aw,

the second term on 'the right hand side tends to zero by (11). By
Lemm 9, {AU,} converges weakly and by Lemma 12, {||AU,|l} conv-
erges to ||Aw|l. Hence {AU,} converges to Aw. Thus the first term on
the right hand side of the above inequality tends to zero. Therefore

NUe—wll . £1|AU, — Aw|| +||ILU,— Lw||—0 as a—0.
By the equivalence of norms, {U,} converges to w in X.
THEOREM 14. For a>0 and a given yE Y,
li—lg U,=A'y.

Proof. Since {U,} converges to w weakly, we have [w|,=< 1;5)1
JUgll. Combining this and Lemma 7, we get %i}glllUﬁ—wH 1=0. Then
by Lemma 12, {U,} converges to w in X. that is,

Lim| U, — ALyl =0.
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We have shown that under the assumption that N(A) N N(L)= {0},

R(L) and AN(L) are closed, the operator equation (7) provides a
unique solution U, which depends continuously on y for each >0,
and U,—ALly as a—0. Therefore {A*A-+aL*L)"1A*} is a family of
regularizing operators for the constrained minimization problem (2)-(3)
in the sense of Tikhonov [10].
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