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THE WEIGHTED GENERALIZED INVERSE OF A
LINEAR OPERATOR AND REGULARIZATION

MAN-SUK SONG

1. Introduction
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In this paper we introduce the weighted generalized inverse of a lin­
ear operator in a general Hilbert space setting and the method of regu­
larization to obtain an approximate solution to an ill-posed constrained
minimization problem.

Let X and Y be (real or complex) spaces with <.,.), 11 . 11 denoting
the inner product and the norm for both. Let A be a bounded linear
operator from X into Y, and let A * denote the adjoint of A, i. e., for
all xEX, yE Y,

(Ax, y) =<x, A*y).

Let R(A) and N(A) denote the range and the null space of A respec­
tively. For any subspace S, we denote the orthogonal complement of S
by S.l and the closure of S by S. It is well known [9J that

X =N(A) ffiN(A).l
Y=N(A*) ffiN(A*) 1.

{R(A)} .l=N(A*) , R(A*) =N(A) l.

For a given bE Y, an element uEX is called a least squares solution
of the operator equation

(1) Ax=b

if IIAu-bll ~ IIAx-bll for all xEX.
Among least squares solutions an element ii of minimal norm is called
a pseudosolution or a best approximate solution of (1), i. e., Iliill ~ Ilull
for all least squares solutions u. For each bE R (A) +R (A) 1., the set of
all least squares solutions of (1) is non-empty, closed, and convex.
Hence it has a unique element ii of minimal norm. The generalized
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inverse of A, denoted by At, is defined as the operator which assigns
to each bER (A) +R (A) .L, the unique least squares solution of minimal
norm of the equation (1). Then A t is a linear operator from R (A) +
R (A).L into X. If R (A) is closed, the domain of At, D (A t) , becomes
the whole space Y and At is bounded. But At is unbounded rand R
(A) +R(A).L* Y when R(A) is not closed.

The operator equation (1) is said to be well-posed(relative to the
spaces X and Y) if for each yE Y it has a unique pseudosolution which
depends continuously on y; otherwise the equation is said to be ill­
posed.

The following statements are equivalent [6J:

(a) The operator equation (1) is well-posed in (X, Y).
(b) A has a colsed range in Y.
(c) A+ is a bounded linear operator on Y into X.

Let Lbea bounded linear operator from X into Z, where Z is a
third Hilbert space. We assume that the range of L, R (L), is closed in
Z, but the range of A, R(A), is not necessarily closed in Y.. For a
given y in the domain of At, let

(2) S,= {uEX : lIAu-ylly=infIIAx-ylly, xEX}.

Then we consider the following minimization problem: Find an element
wES, such that

(3) lILwllz=inf {IILullz: UES,}.

This problem (2)-(3) is generally known as a constrained minimization
problem with constraint operator L.

Since for any UES" u=Aty+ v for fome vEN(A), the problem(3)
is equivalent to

inf IILull=inf IIL(A+y+v)ll=inf Ilull.
UES, "EN(A) uELS,

Noting that LS, is a translate of the subspace LN(A), the problem
(2)-(3) has a solution for every yED(At) if and only if LN(A) is
closed, and the solution is ~nique if and only if N(A) nN(L) = to}
[6J. It is not difficult to show that LN(A) is closed if and only if
JV(A) +N(L) is closed. Throughout this paper, we assume that N(A)
nN(L)='{O} and N(A)+N(L) is closed, i.e., that the constrained

minimization problem (2)-(3) has a solution for each yED(At) and
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the solution is unique.

2. Weighted generalized inverse

Let

(4) [u,vJ:=<Au,Av)y+<Lu,Lv)z for u,VEX

and
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M= {xEX: L*LxEN(A)J.}.

Then the following proposition is an immediate consequence of the de­
finition of [.,. J and the assumption that N(A) nN(L) = {O}.

PROPOSITION 1. (a) (4) defines an inner product in X.

(b) M is a closed subspace of X and is orthogonal complement of N(A)
with respect to the new inner product (4), i. e.,

X=N(A)t£hM

where (jjL denotes the orthogonal decomposition with respect to [.,. J.

Let XL denote the space X with the new inner product [.,. J.

THEOREM 2. An element wEX is a solution to the problem (2)-(3)
if and only if A*Aw=A*y and L*LwEN(A)J..

Proof. See, for example, Nashed [6].

According to the Theorem 2, the problem of constrained minimIzation
problem (2)-(3) is equivalent to finding an element wEM such that
A*Aw=A*y. Thus the solution w is the least squares solution of X L­
minimal norm of the equation (1). Let A L t denote the map induced
by y~w and call it the weighted generalized inverse of A. Then the
weighted generalized inverse A L t is the generalized inverse of A rela­
tive to the decompositions

X=N(A)(jjLM and Y=R(A) (jjR(A)J..

The relation between At and A L t is

ALt= (2I-AtA- U)At

where U is the projector of X onto N(A) along M [6J, [8J.
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3. Regularization. Existence and uniqueness of the regularized
solution

When the range of A is closed, the problem (2) - (3) is well posed.
Hence our interest is in the case that the range of A is not closed
and therefore the problem is ill-posed. As usual for the ill-posed
problems, we regularize it by a family of stable minimization problems.

Let W be the product space of Y and Z with the usual inner pro­
duct:

W=YXZ,
«(Yh Zl), (Y2, Z2) >w= (Yh Y2>Y+ (Zh Z2>Z

for Yh Y2 E Y and Zh Z2EZ. From now on we drop the subscripts X, Y
and Z for the inner product and norms whenever the meaning is clear
from the context.

For a>O, let Ca be a linear operator from X into W defined by

CaX= (h, vaLx) for xEX.

LEMMA 3. For a>O, the range of Ca, R(Ca), is closed if R(L)
and A(N(L» are closed.

COROLLARY 4. Suppose that R(L) and A(N(L» are closed, and
N(A) nN(L) = {O}. Let b= (y, 0) be an element in W. Then for a>
0, the operator equation CaX=b is well posed.

By the Corollary 4, the operator Ca has the bounded generalized in­
verse Ca+ defined on all of W for a>O when A(N(L» is assumed
to be closed in addition. For the given bE W, let Ua denote the
unique least squares solution of minimal norm of the equation Cax=b
for each a>O i. e., Ua=Ca+b.

From the definition of Ca and inner product of W, we get

Cax-b= (h-y, v'aLx)

and

(5)

Let us write

(6)
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THEORH1 5. Let a>O. An element X a in X minimizes the -quadratic
functional Ja(x) if and only if

(7) (A* A+aL*L)xa=A*y.

Proof. It is easy and is omitted.

By Theorem 5 and (5), we conclude that Ua=Ca+b is the unique
minimizer of the quadratic functional J a (x) and also the unique solution

of the equation (7), which is equivalent to Ca*CaX=Ca*b. Throughout
the paper we assume that AN(L) is closed. Then R(Ca) is closed for
a>O and in particular R(C l ) is closed. Therefore Cl has a hounded
inverse on R (Cl) and hence there exist constants ml and m2 such that
O<ml~m2<oo and

(8)

We denote the new norm derived hy IIClxl1 hy IIxllL i. e., Ilx11L2 = liAxll2

+IILxlJ2.

PROPOSITIO;\l 6. Suppose that R(L) and LN(A) are closed.

(a) If A(M) is closed, then R(Ca) is closed.
(h) If R(A) is closed, then R(Ca) is closed.
(c) If N(L) is finite dimensional, then N(L) +N(A) an R(Ca) are

closed.

REMARK. By Lemma 3 and Proposition 6, if either N(L) or M IS

finite dimensional, then the operator equation (7) is well-posed.

In this section we show that the regularized solution Ua converges
to the solution At LY as a tends to O.

LEMMA 7. (a) wESy is the solution of the problem (2)-(3) if and
only if wEM and Jo(w) ~Jo(x) for all xEX where Jo(x) =IIAx-ylJ2.
(b) Ua is the solution of (7) if and only if Ja(Ua) ~Ja(x) for all
xEX.

LEMMA 8. Let a>O. Then

IILUall~ IILwl1 and IIAUall~ IIAwl1
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where w=At LY'
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Proof. Since Ja(Ua) -;;;. Ja(x) for any xEX, we get IIAUa-YII2+
allLUa Il2-;;;'IIAw-YI12+a IlLwI12. By Lemma 7-(a), IIAw-yIl2~IIAUa­

yII2 and we get the :first inequality. Since A*Aw=A*y, <A*Aw, w)=
<A*y,w). Similarly, A*AUa+aL*LUa=A*y implies <A*AUa, Ua)+
a<L*LUa, Ua)=<A*Ay, Ua). Using these equations, we get

(9) Jo(w) =IIAw-YI12=IIAwIl2-2<w, A*y)+ l/y112
=-IIAwIl2+IlYIl2.

(10) JO(Ua) =IIAUa-YII2=IIAUaIl2-2<Ua, A*Y)+IIYII2

= -IIAUaIl2-2aIlLUaI12+IIYII2.

By the minimizing property of w, Jo(w) ~JO(Ua) which implies
-IIAwIl2+llyIl2~ -IIAUaI12-2aIILUaI12+IIYI12. Now the second inequality
follows from this.

LEMMA 9. For a>O,
lim A*AUa=A*y.
«-0

LEMMA 10. The set {Ua } is bounded in X and has a weakly conver~

gent. subsequence, say {Up}.

LEMMA 11. Suppose {Up} converges weakly to w. Then
iiJEM and W=w.

Proof. For each [3>0, A*AUp-A*y=A*(AUp-y)=-(3L*LUp.
This implies that L*LUp belongs to R(A*) which is contained in
N(A)l-. Hence <v, L*LUp) =0 for each vEN(A). By the weak COnver­
gence of {Up}, we have

[v, iiJJ=lim[v, UpJ=lim {<A*Av, Up) +<v, L*LUfJ)} =0
p_o p-o

for each vEN(A). Therefore w is in M. To prove the second state­
ment, we show that w minimizes J o(x) and by uniqueness of w we get
the desired result. It suffices to show that <A*Aw,x)=<A*y,x) for each
xEX. For each :fixed x, by the weak convergence of {Up} and the
boundedness of A*A and L*L we have

lim {<A*AUp, x) +[3<L*L Up, x)} = <A*y, x).
p-o

Therefore, we get <A*Aw, x) = <A*y, x).
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LEMMA 12. Suppose O<a'<a. Then

and
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LEMMA 13. Suppose that the subsequence {Ufl} converges strongly to
w. Then {Ua} converges to w.

Proof. Since

11 UfJ -wIIL= (1IAUfl -AwI1 2+ IILUfl-LwI1 2)1I2

~ (~)1/2 (IIA Ufl- Awll + IlL Ufl-Lwll)

and 11 Ufl-wllc~O as f3----)O, we get

(11) \\AU8 -Awll----)O
(12) IILUfl-Lwll-O.

By Lemma 11, {LUa } is monotonically increasing sequence as a-O and
thus by (12), {L Ua} converges to Lw. Let O<f3<a. Then in the
following inequality

IIAUa-Awll;;:;IIAUa-AUflll+IIAUfl-Awll,

the second term on .the right hand side tends to zero by (11). By
Lemm 9, {AUa} converges weakly and by Lemma 12, {IIAUall} conv­
erges to IIAwll. Hence {AUa} converges to Aw. Thus the first term on
the right hand side of the above inequality tends to zero. Therefore

llUa-wIIL;;:;IIAUa-Awll+IILUa-Lwll-O as a-O.

By the equivalence of norms, {Ua } converges to w in X.

THEOREM 14. For a>O and a given yE Y,

lim Ua=A t LY'
a~O

Proof. Since {Ufl} converges to w weakly, we have IIwIIL;;:; lim
P-II

llUflll L. Combining this and Lemma 7, we get limIIUfl-wllL=O. Then
P~O

by Lemma 12, {Ua} converges to w in X. that is,

limllUa-ALtyll=O.
a~O
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We have shown that under the assumption that N(A) nN(L) = {O},
R(L) and AN(L) are closed, the operator equation (7) provides a
unique solution Ua which depends continuously on y for each a>O,
and Ua--.?ALty as a--.?O. Therefore {A*A+aL*L)-lA*} is a family of
regularizing operators for the constrained minimization problem (2)-(3)
in the sense of Tikhonov [IOJ.
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