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Stability Analysis of One-Multiplier Lattice Digital
Filter Using a Constructive Algorithm
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I. INTRODUCTION

Due to recent advances in semiconductor tec-
hnology, there has been increasing interest in
the digital processing of signals, The basic
element of almost every digital system is a
digital filter, These digital filters are often
implemented using a microprocessor with fixe-
dpoint arithmetic, Due to finiteness of the
signal wordlength, digital filters become non-
linear(1], and for this reason the output of
the digital filter deviates from what is actually
desired, This is particularly true in the case
of recursive structures, 1i,e,, structures whose
signal flow diagram involves directed loops, It
follows that in digital filter design there are
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stability problems which may have to be con-
sidered due to these effects, »

In papers[2] and (3], Brayton and Tong
established some significant results which make
it possible to construct computer-generated
Lyapunov functions to analyze the stability of
nonlinear systems by means of a constructive
algorithm, We find the regions in the param-
eter plane where a given second-order fixed-
point one-multiplier lattice digital filter is
globally asymptotically stable, using the con-
structive algorithm of Brayton and Tong, In
these regions, the absence of limit cycles due
to the quantization and overflow nonlinearities
is ensured, This specific digital filter was
suggested in[4] for further study,
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I. BACKGROUND MATERIALS

A, Notation

Let U and V be arbitrary sets, If u is an
element of U, we write u€U, If U is a subset
of V, we write UcV, Let U x V denote the
cartesian product of U and V, The boundary
of U is denoted by oU, If W is a convex
polyhedral region, the elements of the set
E[W] denote its extreme vertices and H(W]=
W UaW denotes its convex hull,

Let R denote the real line, and let R* denote
the set of real-valued n-tuples, The symbol |- |
denotes a vector norm on R* If f is a function
of a set X into a set Y, we write f:1X-Y,
The function f(-) is said to belong to the
sector [k, k], if £(0)=0 and Kk, =f(x)/x=
ks, x50, for all x€R, And B(r)={xeR": x|
<r},

Matrices are usually assumed to be real and
we denote them by upper case letters, If A=
{ai;) is an arbitrary n x n matrix, then AT
denotes the transpose of A, Also, |IAl] is used
to denote the matrix norm of A induced by
some vector norm, A set of matrices is denoted
by an underlined upper case letters, e, g., A.
The set of extreme matrices of a convex set of
matrices A is denoted by E[A],

Let p€l={t,+k}, k=0,1,2, -, with tLER,
In a digital filter structure block diagram, z!

represents a unit time delay,

B, Stability of Systems Described by
Difference Equations

In the present subsection, we consider syst-
ems described by ordinary autonomous differ—
ence equations of the form

x(p+1)=g(x(p)] (E)
where x€R", g:R"—R" and p€l. We denote

unique solutions of (E) by x(p;x,, p.), where
Xo=X(PsiXo, Do), Since we are dealing with
autonomous equations we shall assume without
loss of generality thatt, =0, Any point x,ER"
for which it is true that x.=g(x.) is called
an equilibrium point of (E), We shall hencef-
orth assume that x=0 is an isolated equilibr-
fum of (E), Thus, we have in particular 2{0)
=0,

We will call any nontrivial periodic solution
of (E) a limit cycle, It is customary in the
study of digital filters to include nonzero
equilibrium points as limit cycles, We will
follow this practice,

Since (E) is a system of nonlinear cquations,
it is in general not possible to generate a
closed-form solution for (E), For this reason,
the qualitative analysis of the equilibrium x=0
of (E) is of great importance, especially the
stability analysis of x=0 in the sense of
Lyapunov,

The principal Lyapunov results which yield
conditions for stabiliy, asymptotic stability or
instability, involve the existence of functions,
viR"—=R, For those definitions and their related
terms, refer to [5),

The first forward difference of a function

v:R"*>R along the solution of (E) is given by
Dy () =v{g(x) ]—v(x), m
Furthermore, we shall assume that v is
continuous and that it satisfies a Lipschitz
condition with respect to x, We now state g
Lyapunov theorem which will be of interest
to us,
M@n_l__ The equilibrium x=0 of (E) is
globally asymptotically stable if there exists a

function v:R"-R such that (i) vis radially
unbounded and (ii) Dvgy(x) is negative definite
for all x€R",

Note that if it is possible to find a v-function



for (E) which satisfies the conditions of The-
orem 1, then
i) system (E) has only one equilibrium ;
i) this equilibrium will be x=0;
iii) no limit cycles will exist for system (E),

C, Extreme Matrices of a Convex Set
of Matrices

In this subsection, we introduce the concepts
of a convex set of matrices, an extreme subset
and an extreme matrix, We phrase our definit—
ions in terms of a linear vector space of real
n x n matrices over R, For general definitions
of these concepts, see [6],

Definition 1, Let(R*™", R) denote the linear
space of real n x n matrices over R, A set
A€R™ s convex if X, Y€A, k€R, and 0=k
=1, imply kX+(1—k)Y€A,

Definition 2, Let A;, A€A and k €R, A
nonvoid subset BCA. is said to be an extreme
subset of A if a proper convex combination
kA +(1—k)A,, 0<k<], isin B only if A,
A4€B. An extreme subset of A consisting of
just one matrix is called an extreme matrix of
A, The set of extreme matrices of A is deno-
ted by E(A),

In order to apply the above definitions to a
second-order digital filter, we consider matrices
of the form

a=[2 1]

where the elements of A satisfy the inequalities
a=a=a,
b;=bz=h,
Ci=c=C,
d=d=d,
where a;, b;, ¢ and d;, i=1,2 are constants,
Let A be the set of all matrices obtained by

varying a,b,c and d over all allowable values,
The set of extreme matrices may be obtained

as,
a bj
p={{ J iikm=12}- @
D. Constructive Stability Algorithm

In two papers(2) and(3], Brayton and Tong
present an algorithm to construct a Lyapunov
function to establish the stability and global
asymptotic stability of the equilibrium x=0 of
dynamical systems described by ordinary diff-
erential equations and also by difference equa-
tions,

To utilize this constructive stability algori-
thm, we rewrite the given system equation,

x(k+1) =glx(k)] 3

x(k+1) =Mx (k) Ix (k) (4)
where M[x (k)] is chosen so that M[x (k) Jx (k)
=g[x(k)], For every x(k)€R?, M[x(k)] will
be a real n x n matrix, If we let M denote the
set of all matrices obtained by varying x in
M(x) over all allowable values, then we can
rewrite (4) equivalently as

x(k+1) =My x(k), Mx€M, (5)
In[2Jand (33, it is shown that the equilibrium
x=0 of (3) is stable (globally asymptotically
stable) if the set of matrices M is stable(asy-
mptotically stable), The precise definitions of
these terms are given next, A summary of the
results of Brayton and Tong is presented next,
Refer to(2], (3] and(7] for further details,

We call a set A of nxn real matrices stable
if for every neighborhood of the origin UCR",
there exists another neighborhood of the origin
VCR® such that for every Me A’ we have
MVCU, Here A’ denotes the multiplicative
semigroup generated by A and MV={u€R™:
v=Myv, vE€V},

In(2], it is shown that the following state-
ments which characterize the properties of a

class of stable matrices are equivalent,



a) A is stable,

b) A’ is bounded,

¢) There exists a bounded neighborhood of
the origin WCR" such that MWCW {or every
McA, Furthermore, W can be chosen to be
convex and balanced,

d) Therc exists a vector norm|-ly such that
IMxlw=Ixlw for all MEA and for all x€R",

Now let rW={u€R":u=rw, weW}, where
reR and WCRe,
above are related by

Ixlw=inf{r:irz0, x€rw} (6)

Since statements ¢) and d)

it follows that Ixl|w delines a Lyapunov func-
tion for A, i.e., it delines a function v with
the property

v(IMx)=v(x) {for all MEA and x€R", (7)

Next, we call a set of matrices A asympto-
tically stable if there exists a number p>1
such that pA is stable, In [3], it is shown that
the following statements which characterize the
properties of a class of asymptotically stable
matrices are equivalent,

a) A is asymptotically stable,

b) There exists a convex, blanced and pol-
yvhedral neighborhood of the origin W and a
positive number r<{1 such that for each MeA
we have MWCrW,

c) A is stable and therc exists a positive
constant K such that for all MEA’, [ (M)
=k<1, i=1,:- ,1, where 2;(M) denotes the
i-th eigenvalue of M,

In(2) and(3], a constructive algorithm is
given to determine whether a set of m n x n real
matrices A={M,, +«+++ M1} is stable by star-
ting with an initial polyhedral neighborhood of
the origin W, and by defining a sequence of
regions Wy,; by

(o] N
WIH.:H[Ungij, where k;=(k—1)
i=0
mod m, (8)

Now A is stable if and only if
[ee]
W= W 9
k=0

is bounded, Since all extreme points z of Wi,
arc of the form zzM%u, where u is an extreme

point of Wy, we need only deal with the ext-
eme points of Wy in order to obtain

WkH:H[Mf{lu:uEE(Wk)] . (10)

If 1A(Mi) 1<1 for all My, €A, then there exists

an integer J such that
o i N .
HOUM{ Wid=H{UM! W.] (1)
j=p kl i=0 kl

since Wy is a bounded necighborhood of the
origin, Thus, Wi,; will be formed in a finite
number of steps, since W, is expressed as the

convex hull of a finite set of points,

II. NONLINEARITIES IN
DIGITAL FILTERS

In fixed-point arithmetic, each number is
represented by a sign bit and a magnitude,
Thus, the magnitude of any number is repre-
sented by a string of binary digits of fixed
length B, When two B-bit
multiplied, the result is a 2B-bit number,

numbers  are

A quantization nonlinearity is produced when
the 2B~bit number is reduced in wordlength to
B bits, Addition also poses a problem when
sum of two numbers falls outside the represen-
table range, An overflow nonlinearity results
when this number is modified so that it falls
back within the representable range, Quantiza-
tion only affects the least significant bits, In
general, the overflow nonlinearty changes the
most significant bits as well as the least sign-
ificant bits of a fixed-point number, Thesc

two types of nonlinecarities are well described



in the literaturee, g,, [1] and[(8)).
Quantization can be performed by substituting
the nearest possible number that can be repre-

sented by the limited number of bits, This

type of nonlinear operation is called a roundoff

quantizer, Another possibility consists of disc-
arding the least significant bits in the number,
If the signals are represented by sign and mag-
nitude then we have a magnitude truncation

quantization characteristic,

If an overflow occurs, a number of different
actions may be taken, If the number that
caused the overflow is replaced by a number
having the same sign, but with a magnitude
corresponding to the overflow level, a saturation
overflow is obtained, Zeroing overflow substit-
utes the number zero in case of an overflow,
In two’s complement arithmetic, the most signi-
ficant hits that caused the overflow are disca-
rded, Overflows in intermediate results do not
cause errors, as long as the final result does
not have overflow, In this case, we use two’s-
complement overflow, Another way of dealing

with overflow is the triangular overflow as

proposed by Eckhardt and Winkelnkemper(see
(.

It is possible to have different wordlengths
for the various signals in the filter, resuling
in different quantization stepsizes and/or diff-
erent overflow levels, We will assume throug-
hout this paper that all quantizers in a filter
have the same quantization stepsize, q, and are
the same type, e,g., roundoff or truncation,
Similarly, we will assume that all overflow
nonlinearities in a filter have the same overflow
level, p, and are the same type,

The above nonlinearities will be viewed as
belonging to a sector [Km, ku], where

ka=f(w)/w=ky for all weR, w0, (12)

Under the above assumptions, we view the

quantization nonlinearities as belonging‘ to the
sector [0, k,)] where
1 for truncation
- 2 for roundoff, as)
Henceforth, k, will represent the upper slope
of the sector that contains the quantization
nonlinearity, The overflow nonlinearities are
represented as belonging to the sector (Ko, 1]
where
0 saturation or zeroing
k.= { —1/3 triangular (14)
—1 two’'s-complement,
Henceforth, k, will represent the lower slope
of the sector that contains the overflow nonli-

nearity,

. ONE-MULTIPLIER LATTICE
DIGITAL FILTER

A, Constructive Stability Results

We apply the contructive algorithm to the

stability analysis of one-multiplier lattice
digital filter,

related to the interesting work of (4],

Our presnt results are closely
They
suggested this specific digital filter for further
study,

Since their introduction by Itakura and Saito
{9], lattice digital filters bave been used ext-
ensively in the area of speech and signal proc-
essing(10), The particular lattice structure we
consider is the one-multiplier lattice filter(11],
There are two types of structures, positive and
negative, In this paper the negative type of the
second order will be used,

Quantization is assumed to take place after
each multiplication and overflow is placed after
each addition, This structure is a realistic
implementation of the actual filter using a
fixed-point microprocessor, and is shown in

Figure 1,



Gary and Markel(11] have shown that the
linear digital filter(of infinite wordlength) will
have all of its poles within the unit circle, and
thus will be globally asymptotically stable, if
and only if all of the k; parameters satis{y

kil <1, i=1,2, (15)

The state equations for the structurc shown

in Figure 1 are

x1 (k1) =P,[—Q [k Ps[x, (k)
—Qu(kyx2(k)) 1]~ Qalkex, (k) 1]
X (k- 1=Pox, (k) +Q, [k, P3(x, (k)
—Qa(ksx,(k))I1] (16)
with Q;, i=1, 2 representing the quantizers and
P, i==1, 2, 3 representing the overflow nonlin-
earities, We next develop the set of extreme

matrices for the structure,

—L{(T) Q,

5 -1
2z
+

%2

Fig. 1.
overflow nonlinearities,

Following the technique outlined in Section

I —D, the state equations are expressed as

x(k-1)=M{x(k) Ix(k) a7
where M x(k)] is given by
—ki6s (%) Kyr (%)
M(x) = 18
$s(x) ~kikyps (x)

and ¢ (x) =P (x)/x $2(x)=Q,(x)/x
B3 (x) =Qz(x)/x $4(x) =P3(x)/x
$s (x) =P, (x)/x (19)
&6 (x) =8, (x) 2 (x) $4 (x)
P (%) =6 (x) by (x) (ki B2 (%) B4 (X) —1)
B (x) = s (%) (1+k1 2 (x) B4 (x))
B (x) =6, (x) B (x) P4 () B (x).

The functions ¢;(x), i=1 to 5, are bounded

One-multiplier Lattice Digital Filter: (—) type with two quantizers and three

as follows :

1= (x)=r, for i=1,4,5

8,1 =0¢; (x)=s, for i=2,3 (20)
where ry=k,, r;=1,8=0 and s;=Kk,,
The functions ¢g(x), $(X)Ps(x), P2(x)dy(x)
and ¢y(x) are also bounded by constants,

a=0(x)=ay

bi=6¢,; (x) ¢ (x)=b,

=0 (%) Pa(x) =0

di=dy (x)=d, @1
where,

a;=b,=c,=k.k,

ay=by=c,=Kk,

di=kk? and d;=kZ



The functions ¢,(x) and ¢g(x) are also bou-
nded by constants,
e=¢,(x)=e,
=0 () =1, (22)
where e;=min{b; (k,c;—1), i,j=1,2}
e;=max{b; (k,¢;—1), i,j=1,2}
fi=min {r; (1-+kcy), i,j=1,2}
fy=max{ri(1+kc), 1,j=1,2}.

Thus the extreme matrices of the set M atre

"klai kgej .
fo -kkoda) i, j,m,n=1,2} (23)

E(M)=[

In this case, the constructive algorithm uses
sixteen extreme matrices for every point in the
k;-k, parameter plane,

If the overflow nonlinearites are absent, then
the set of extreme matrices is:

kla,i kzdj

e —klkzcn]f i, jym, n=1, 2], (24

B(M) =[[

where a,;=¢,(x)=a,
b=¢;(x)=b,
a=6¢;(x) Py (x)=c,
d,=6s (x) (kB2 (x) —11=d,
e=1+kid(x)=e, (25)

with a=

dy=min{b; (k;a;—1), 1, j=1, 2}
dy=max{b; (kja;—1),1, j=1,2}
e;=min{l+k,a;,i=1, 2}
e;=max{l1+kai,i=1,2}.
Using these extreme matrices, we apply the
constructive algorithm to get the stability res-

ults, Some of them are shown in Figures 2—5,

Only half of these regions are shown, since
they are symmetric about the ky-axis, We used
the value of p=1,001 to show that A is asy-

mptotically stable for a stable matrix A,

The analysis by the constructive algorithm
yields sufficient conditions for global asympto-
tic stability in terms of the parameters of a
given filter under zero-input condition, These
results constitute also sufficient conditions for

the absence of zero-input limit cycles,

o
1 .

W

Fig.2, Magnitude truncation quantizer and
triangular overflow
';2
1
0 1 k)
44
Fig.3. Magnitude truncation quantizer and

two’ s-complement overflow



=

\\“m

DA

-1

Fig.4. Roundoff quantizer and saturation or
zeroing overflow
k
1
0 N »k,
W
Fig.5, Magnitude truncation quantizer and

no overflow

R, Jury and Lee Stability Results

For digital filters with quantizers and with-
out overflow nonlinearities, an absolute stability
criterion by Jury and Lee[12] can be wused to
determine sufficient conditions for the global
asymptotic stability of the equilibrium of the
system,

A system with several nonlinearities is repr-

esented by the system shown in Figure 6,

The m nonlinerar eclements are represented by the
vector-valued function f(w)where f;(w;) is the
output of the i-th nonlinear element, The input
of this element is the i-th component of the
vector wT=={w,, «+--- y W,

The inputs and outputs of the nonlinear
elements are interconnected by linear filters
with transfer functions, gi;(z), assumed to be
controllable and observable[13), that are the
elements of the m x m transfer matrix G(z),
The linear filter g;;(z) connects the output of the
j-th nonilinear element and the input of the
i-th nonlinear element, We assume that each
element gi;(z) has all of its poles within the

unit circle except possibly one pole at z=1, We

assume that the nonlinearities fi(w;) satisfy
the following conditions :
1) £i(0)=0, i=1,2,"" ,m
i) o<fi(w;)/wi<ky;, for all w;:0
iii) w(k)—0 implies y(k)—0
iv) —oo<c WD (26)

where k;; is the i-th diagonal element of the

m X m matrix K,

G(z) -y

Fig.e6,

A general discrete-time system with
many nonlinearities

Theorem 2, [12) : The system of Figur 6
satisfying the above conditions for G(z) with
nonlinearities described by (26) is globally
asymptotically stable if

H(z) =2K""4G(2) +G*(2) @27

is positive definite for all z: |z|=1, where
G*(z) denotes the complex conjugate transpose
of G(z).

For the second-order one-multiplier lattice
digital filter with two quantization nonlineari-



ties and no overflows in Figure 1, the matrix Jury and Lee absolute stabiliity criterion for

G(z) may be written as comparison with the constructive results,

k2 k,(1+z")] While existing methods of stability analysis

G@) ={ lo(z2—z)  ke?
The matrix H(z), given by

(28} (1] are generally different for each particular
structure, the constructive algorithm allows us

to use one method to study the stability of

Hz)=

nonlinear digital structures, and moreover it

(Harthtey et
ki (1-Fz)-Fly(z2—2") 2/kgatky{a?+27%)

may be applied to higher-order filters with

decomposition and aggregation method,

(29

must be positive definite for all z @ 1z =1, For
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magnitude truncation, k;;=k,;=1, and for rou- during the 1084—1985 period

ndoff, k;;=k,;=2 One of two cases is shown
in Figure 7 for magnitude trumcation, Only
half of the region is shown, since it is symm-
etric about the k,-axis, 1
ky

[
1

V7,

) % 4,

Fig.7. Magnitude truncation quantizer and
no overflow by Jury-Lee stability
criterion

y. CONCLUSION

Using the constructive stability algorithm
due to Brayton and Tong, we analyzed the
stability of the equilibrium x=0 of the one- 7.
multiplier lattice digital filter of the second
order, All the results are new, We used the
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