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On O-Semimetrizability of Topological Spaces

by Byong-In Seung and Eun-Sook Kang
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Many of the generalized metric spaces can be characterized by separation properties. The main
nethod in this paper is another chracterization of metrizable spaces by a symmetric countable open

:overing map g.
1. Preliminaries

For a subset S of a space, we will denote the closure, and the complement of S by S~ and &¢,
respectively. Throughout this paper, all spaces will be T)- spaces.

Let X be a space and g a function from NxX (N=the set of positive integers) into the the
.opology of X such that

zeg(n,z) and g(n+1,2)Cgn, z)
for each (n,2)=NxX, We call such a function a COC-map (=countable open covering map). For
any subset S of X, we denote
g(#,8)=U (g(n x):z=8}.

Let @, % be some families of subsets of X. Consider the following separation properties on a

COC-map g.

Definition 1.1. For each A=w, B=3% disjoint, if there exists an n&N such that
1. ANg(n, B)=¢, then g separates ¥ from o,

2. ANg*(n,B)=¢, then g separates doubly % from &,

3. ANg(n,B) =g, then g separates regulary % irom ov.

Definition 1.2. A space X is semimetrizable if there exists a real valued function d on Xx X
such that (1) d(z,5)=d(y,2) >0, (2) d(z,y) =0 if and only if z=y, (3) for McX, zeM-
if and only if d(zx, M) =infl{d(z,y): yeM)}=0. If in addition, 4 satisfies (4) for every £>0 and
zeX, Si(z;8)=(ye=X:d(z,y)<e] is an open subset of of X, then X it said to be o-semimetrizable.

Lemma 1.3. A space X is o-semimetrizable if and only if for each z&=X, there is a symmetric
COC-map g such that if x=g(n,x,), then z is a cluster point of {z,}.

Proof. Let X be a o-semimetrizable space. For each n, take g(n,z)=S(z; %). Then clearly
g is symmetric. Let zeg(n, z,) and U be a neighborhood of z. The for some &, g(#, z)=38(z, 7%—)
CU and for all s>k, z,=g(n,z)CU, Conversely, for any z,ye&X define a o-semimetric 4 by
d(z,y) =the smallest integer 7 such that y&g(n,z). Then d is a o-semimetric.
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Sakong gave a question.

Question. Suppose that X has a symmetric COC-map separating regularly points from closed sets.
Is X metrizable ?

Such a space X is not metrizable, but o-semimetrizable.

Counter Example 2.1. We actually use a space first constructed by Borges [2]. Let X be the
set of all points (z,y) of the plane such that (1) y=0and z, V7 /n—=z, 2 /n+z are irrational
for each positive integer n, or (2) z is rational and y= /3 /n for some positive integer n. A base
for a topology on X consists of all sets B((z,5),n)={(z,»}U{(w, 2)eX:|w—2|<l/z and
0 ]z—y|<|w—=z|} (.e., B({z,¥),n) is a “butterfly region centered at (z,y) with radius 1/n
and vertex angle n/4”) for any (z,y)eX and positive integer n. Actually a “small” neighborhood
of a point (z, v 7/n) X is just an open interval of rational numbers in the horizontal line passing
through (z, /2 /a) and containing (z, +/2 /7). Also the only boundary points of a neighborhood
B((x,0),n) are (z+1/2,0) and (z—1/n,0), since the hypotenuses of the “wings” of the butterfly
B((x,0),n) contain no paints (w, /2 /n) X because of (1). Consequently one immediately sees that
X is a regular space. By defining g(a, (x,5)) =B((x,¥),n), we can see that g separates regularly

points from closed. And Borges proved that X is not stratifiable hence X is not metrizable.

Theform 2.2. A regular space X is o-semimetrizable if and only if it has a symmetric COC-map
separating regularly points from closed sets.

Proof. Let g be a symmetric COC-map which the condition in Lemma 1.3. Let F be a closed
set not containing z. Since X is regular, there is a neighborhood U of z such that U"NF=¢. Then
Ue is also a closed set not containing x. Suppose that g{n, ) N U*+#¢ for every nN. Then there
are r,=U* so that z,&=g(n, ). By symmetry, zg(n, z,). Thus z is a cluster point of x,, which
is a contradiction. Since for some n<=N, g, z)CU, gl ,z)~CU-, Therefore g(n,z) " NF=¢
for some n=N.

For the converse, let g be a symmetric COC-map separating regularly points from closed sets.
Suppose that ze&g(n, z,) for every neN. Then by symmetry, z,=g(n,z) for every n=N. Let U
be an open neighborhood of x. Since z&£UF, there exists k=N such that g(k, z)"NU* =¢. Then
for every n>k, z,=g(n,z) Cg(k, z)CU. Therefore x is a cluster point {z,}.

Let d be a semimetric for X. The following condition is due to Arhangel’skii.
(K) For any disjoint compact K; and K, in X, d(K,, K;)>0.

Definition 2.3. A semimetric satisfying (K) is called a K-semimetric. A space is said to be
K-semimetrizable if it is semimetrizable via a K-semimetric.

Theorem 2.4. A regular space X has a COC-map g, which separates doubly points from closed
and a COC-map g, which separates doubly closed from points. Then X is a K-semimetrizable.

Proof. Let g(n, ) =g,(n, z) Ng,(n, z) for each z&X. Then clearly g is a COC-map which sepa-
rates doubly points from closed and separates doubly closed from points. Define a semimetric d by
d(z,y)=1/inf{jeN:zZg(j,») and yEg(f,2)}. Since g separates doubly points from closed, d is
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ell-defined. Let K; and K, be disjoint compacta. For each z in K;, there exists n(z)=N such
at z£g(n(x), K,). This implies that {X—g»n(z),K,) : z=K,} forms an open cover of the
ympact set K;. Let {X—g(n(z),K,) : r.€K,, 1<i<k) be a finite subcover of K, and =
ax {n(x;) . 1<i<k}. Then KiNg(n, K;)=¢. Similarly there exists n’&N such that K;(Ng(’, K})
:¢. It follows that d(K, K,) >1/m>0, where m=mazx {n,n'}.
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