On O-Semimetrizability of Topological Spaces

by Byong-In Seung and Eun-Sook Kang

Kyonggi University, Seoul, Korea

Many of the generalized metric spaces can be characterized by *separation properties*. The main nethod in this paper is another chracterization of metrizable spaces by a symmetric countable open covering map g.

1. Preliminaries

For a subset S of a space, we will denote the closure, and the complement of S by S^- and S^c , respectively. Throughout this paper, all spaces will be T_{1-} spaces.

Let X be a space and g a function from $N \times X$ (N = the set of positive integers) into the the opology of X such that

$$x \in g(n, x)$$
 and $g(n+1, x) \subset g(n, x)$

for each $(n, x) \in N \times X$. We call such a function a COC-map (=countable open covering map). For any subset S of X, we denote

$$g(n,S) = \bigcup \{g(n,x) : x \in S\}.$$

Let \mathcal{Q} , \mathcal{G} be some families of subsets of X. Consider the following separation properties on a COC-map g.

Definition 1.1. For each $A \in \mathcal{O}$, $B \in \mathcal{D}$ disjoint, if there exists an $n \in \mathbb{N}$ such that

- 1. $A \cap g(n, B) = \phi$, then g separates \mathscr{D} from \mathscr{O} ,
- 2. $A \cap g^2(n, B) = \phi$, then g separates doubly \mathcal{B} from \mathcal{O} ,
- 3. $A \cap g(n, B) = \phi$, then g separates regulary \mathscr{B} from \mathscr{O} .

Definition 1.2. A space X is semimetrizable if there exists a real valued function d on $X \times X$ such that (1) $d(x,y) = d(y,x) \ge 0$, (2) d(x,y) = 0 if and only if x=y, (3) for $M \subseteq X$, $x \in M^-$ if and only if $d(x,M) = \inf\{d(x,y) : y \in M\} = 0$. If in addition, d satisfies (4) for every e > 0 and $x \in X$, $S_d(x;e) = \{y \in X : d(x,y) < e\}$ is an open subset of X, then X it said to be o-semimetrizable.

Lemma 1.3. A space X is o-semimetrizable if and only if for each $x \in X$, there is a symmetric COC-map g such that if $x \in g(n, x_n)$, then x is a cluster point of $\{x_n\}$.

Proof. Let X be a o-semimetrizable space. For each n, take $g(n,x) = S(x; \frac{1}{n})$. Then clearly g is symmetric. Let $x \in g(n,x_n)$ and U be a neighborhood of x. The for some k, $g(k,x) = S(x,\frac{1}{k})$ $\subset U$ and for all $n \geqslant k$, $x_n \in g(n,x) \subset U$. Conversely, for any $x,y \in X$ define a o-semimetric d by d(x,y) = the smallest integer n such that $y \notin g(n,x)$. Then d is a o-semimetric.

2. Main Results

Sakong gave a question.

Question. Suppose that X has a symmetric COC-map separating regularly points from closed sets. Is X metrizable?

Such a space X is not metrizable, but o-semimetrizable.

Counter Example 2.1. We actually use a space first constructed by Borges [2]. Let X be the set of all points (x, y) of the plane such that (1) y=0 and x, $\sqrt{2}/n-x$, $\sqrt{2}/n+x$ are irrational for each positive integer n, or (2) x is rational and $y=\sqrt{2}/n$ for some positive integer n. A base for a topology on X consists of all sets $B((x, y), n) = \{(x, y)\} \cup \{(w, z) \in X: |w-x| < 1/n$ and $0 \le |z-y| < |w-x|\}$ (i.e., B((x, y), n) is a "butterfly region centered at (x, y) with radius 1/n and vertex angle $\pi/4$ ") for any $(x, y) \in X$ and positive integer n. Actually a "small" neighborhood of a point $(x, \sqrt{2}/n)$ X is just an open interval of rational numbers in the horizontal line passing through $(x, \sqrt{2}/n)$ and containing $(x, \sqrt{2}/n)$. Also the only boundary points of a neighborhood B((x, 0), n) are (x+1/n, 0) and (x-1/n, 0), since the hypotenuses of the "wings" of the butterfly B((x, 0), n) contain no paints $(w, \sqrt{2}/n)$ X because of (1). Consequently one immediately sees that X is a regular space. By defining g(n, (x, y)) = B((x, y), n), we can see that g separates regularly points from closed. And Borges proved that X is not stratifiable hence X is not metrizable.

Theform 2.2. A regular space X is o-semimetrizable if and only if it has a symmetric COC-map separating regularly points from closed sets.

Proof. Let g be a symmetric COC-map which the condition in Lemma 1.3. Let F be a closed set not containing x. Since X is regular, there is a neighborhood U of x such that $U^- \cap F = \phi$. Then U^c is also a closed set not containing x. Suppose that $g(n,x) \cap U^c \neq \phi$ for every $n \in \mathbb{N}$. Then there are $x_n \in U^c$ so that $x_n \in g(n,x)$. By symmetry, $x \in g(n,x_n)$. Thus x is a cluster point of x_n , which is a contradiction. Since for some $n \in \mathbb{N}$, $g(n,x) \subset U$, $g(n,x)^- \subset U^-$. Therefore $g(n,x)^- \cap F = \phi$ for some $n \in \mathbb{N}$.

For the converse, let g be a symmetric COC-map separating regularly points from closed sets. Suppose that $x \in g(n, x_n)$ for every $n \in \mathbb{N}$. Then by symmetry, $x_n \in g(n, x)$ for every $n \in \mathbb{N}$. Let U be an open neighborhood of x. Since $x \notin U^c$, there exists $k \in \mathbb{N}$ such that $g(k, x)^- \cap U^c = \phi$. Then for every $n \geqslant k$, $x_n \in g(n, x) \subset g(k, x) \subset U$. Therefore x is a cluster point $\{x_n\}$.

Let d be a semimetric for X. The following condition is due to Arhangel'skii.

(K) For any disjoint compact K_1 and K_2 in X, $d(K_1, K_2) > 0$.

Definition 2.3. A semimetric satisfying (K) is called a K-semimetric. A space is said to be K-semimetrizable if it is semimetrizable via a K-semimetric.

Theorem 2.4. A regular space X has a COC-map g_1 which separates doubly points from closed and a COC-map g_2 which separates doubly closed from points. Then X is a K-semimetrizable.

Proof. Let $g(n, x) = g_1(n, x) \cap g_2(n, x)$ for each $x \in X$. Then clearly g is a *COC*-map which separates doubly points from closed and separates doubly closed from points. Define a semimetric d by $d(x, y) = 1/\inf\{j \in N: x \notin g(j, y) \text{ and } y \notin g(j, x)\}$. Since g separates doubly points from closed, d is

ell-defined. Let K_1 and K_2 be disjoint compacta. For each x in K_1 , there exists $n(x) \in N$ such that $x \notin g(n(x), K_2)$. This implies that $\{X - g(n(x), K_2) : x \in K_1\}$ forms an open cover of the impact set K_1 . Let $\{X - g(n(x_i), K_2) : x_i \in K_1, 1 \le i \le k\}$ be a finite subcover of K_1 , and $n = \max\{n(x_i) : 1 \le i \le k\}$. Then $K_1 \cap g(n, K_2) = \phi$. Similarly there exists $n' \in N$ such that $K_2 \cap g(n', K_1) : \phi$. It follows that $d(K_1, K_2) \geqslant 1/m > 0$, where $m = \max\{n, n'\}$.

References

- A.V. Archangel'skii, Mappings and spaces, Russian Math. Surveys, 21 (1966), 115-162.
- . Carlos J. R. Borges, On continuously semimetrizable and stratifiable spaces, *Proc. Amer. Math. Soc.*, 24(1970), 193-196.
- . ____, On stratifiable spaces, Pacific J. Math., 17 (1966), 1-16.
- . R.F. Gittings, On o-semimetrizable spaces, Studies in Topology, Proc. Conf. Univ. of N.C., Chalotte, 1974.
- . K.B. Lee, Spaces in which compacta are uniformly regular G_{δ} , Pacific J. Math., 81(1979), 435-445.