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On Best Approximation in Metric Spaces
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The problem of best approximation has been extensively studied in normed linear spaces (see e.g.
3], (43} and (5)). The same problem in metric spaces has been studied by a very few mathema-
icians. The results available in such spaces do not constitute a unified theory. The author in a series
{ papers has made an attempt in this direction. The present paper is also a step in the same direc-
ion. Theorem 1 generalizes a result of {1] on best simultaneous approximation, Thaeorem 2 gener-
lizes a result of [6] on the continuity of metric projections and Theorem 3 gereralizes a result

iven in [4] on the Lipschitzian metric projections. To start with, we recall a few definitions.

Let G be a non-empty subset of a metric space (X, d).

An element g,=G is said to be a best approxzimation to an element z&X in G if d(z, gy =
'(z,G) and it is said to be a strongly unique element of best approximation of z in G if there
xists a constant r=r(z, G) with 0<r<1 such that d(z, g) >d(z, go) +rd(gy, g) for all g=G.

The mapping which takes each point of X to set of its best approximations in G is called the
netric projection of X onto G.

The set G is said to be:

(i) Chebyshev (strongly Chebyshev) if every point of X has a unique best approximation (strongly
mique element of best approximation) in G.

(ii) P-compact if for each zeX, the set Pg(z)= (y=G : d(z,y)=d(z,G)} is non-empty and
ompact.

(iii) 8-compact or spherically compact if for all z&G there exists a 6>>0 such that the set {y=G:
I(z, y)<d(x,G)+8} is compact.

(iv) approzimatively compact if for every z&X and every sequence {g,> in G with ’1llr°x3 d(z, gs)

=d(z,G) there exists a subsequence (g,,> converging to an element of G.
(v) locally compact if for any ze=G there exists an 7>>0 such that the set {y=G : d(z,y) <r)

s compact.
(vi) V-connected if for each open ball 17, the set GN Vis empty or connected.

Let X and Y be two metric spaces. A mapping f : X—2Y, the collection of all subsets of Y, is
said to be upper semi-continuous if the set {z&X : f(z)eM]} is open for every open MCY.

Let C be an arbitrary subset of a metric space (X, d) and F be a bounded subset of X, An element
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z*C is said to be a best simultaneous approzimation to the set F if sup d(y, x*):incf su;FJ d(y, z).
yeF € ye

The following theorem gives the existence of elements of best simultaneous approximation in metric

spaces.

Theorem 1. Let C be a compact subset and F be a bounded subset of a metric space (X,d). Then

there exist a best simultaneous approximation in C to F.

Proof. Consider the function ¢ : C—R defined by
. ¢(x) =§gg d(y, z).

This function is continuous on C. Since C is compact, ¢ attains its infimum at some z*&C, i.e.,
sup d(y, *) =¢(z*) =inf ¢(z)=inf sup d(y, z).
yeF ¢ s€C yeF

Note. For normed linear spaces this result was proved in (1],

D.E. Wulbert proved in (6] that a locally compact, V-connected Chebyshev set in a Banach space
is 6-compact, approximatively compact and has a continuous metric projection. Wulbert's method

extends to the following more general situation without essential changes.

Theorem 2. In a metric space (X,d) every locally compact, P-compact, {’—connected set Gis §-
compact, approximatively compact and its metric projection is upper semi-continuous.

Proof. The proof of the 5-compactness of G is exactly similar to the corresponding proof given
for normed linear spaces in [5)-Theorem 2.2, It is approximatively compact as every d-compact
set in a metric space is approximatively compact (see [2])-Theorem 2). Since G is approximatively
compact, the metric projection is upper semi-continuous (Theorem 3.1 [4)-page 386).

Since for a Chebyshev set the metric projection is single-valued and for single-valued maps the
two concepts of upper semicontinuity and continuity coincide, we have

Corollary. In a metric space (X,d) every locally compact, V-connected Chebyshev set is d-compact,
approximatively compact and has a continuous metric projection.

Finally, we discuss condition under which a metric projection is pointwise Lipschitzian.

Theorem 3. For every strongly Chebyshev subset G of a metric space (X, d), the metric projection
mc i5 pointwise Lipschitzian, i.e., for each x=X, there exists a constant a=a(z,G), such that

d(ne(z), n6(y)) <ad(z,y), yeX.

Proof. Since G is strongly Chebyshev, there exists a unique g,&G and a constant r=r(z,G)
with 0<r<1 such that '
d(z,g) >d(z,g) +rd(g, 8), g€6.
Putting gy=ns(x) and g=nc(y), we obtain
rd(me(n), n6(¥)) <d(z, mc(¥))—d(z, me(x))
<Ld(z,») +d(y, 7¢(9)) —d(x, ne(x))
Ld(z, ) +d(y, nc(2)) —d(x, mc(x))
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<d(z,y) +d(y, ) +d(z,76(2)) —d(z, n5(z))
=2d(z, )

ad so taking a= ;2-, we get the result.

Note. For normed linear spaces this result was proved by G.Freud and E.W. Caeney (see (4]-
age 49).
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