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An Elementary Proof of the Stone-Weierstrass Theorem

by Myung-Woo Han
Joong-Kyeong Technical Junior College, Daejoun, Korea

The Stone-Weierstrass theorem is among the most important in modern abstract analysis. Many
proofs of this important theorem have evolved since its discovery by M.H. Stone in 1937. In
contrast to many proofs of the Stone-Weierstrass theorem Brosowski and Deutsch (1] have proved
the theorem by using the elementary Bernoulli inequality: (1+z)">1+4az, 2=1,2,.. if z>-1.
Using [1] we give an elementary proof of this theorem without appealing to the classical Weierstrass
theorem (nor even the special case of uniformly approximating P,(z)=|z| on (—1, 1] by poly-
nomials) in this note.

Let X be a compact subspace of the Euclidean space R* and C(X) the set of all continuous
real-valued functions on X. If addition and scalar multiplication are defined as usual on C(X) by
(f+8) (@) =f(z)+g(x) and (af) (z)=af(z) for all f,ge=C(X) and a=R, then C(X) becomes
a vector space. If we also define a product on C(X) by (fg)(z)=f(z)g(z) for all f,ge=C(X),
then C(X) becomes an algebra with identity. Now let & be a subalgebra of C(X), that is, &
is a linear subspace of C(X) that contains the product of each pair of its elements. We say that
oA separates points of X if, whenever z and y are distinct points of X, there is an element
fed with f(x) £f(y). o is said to be uniformly closed if whenever f,ed (n=1,2,---) and f,—f
uniformly on X, then f is also in o. If & is an arbitrary subalgebra of C(X), the uniform closure
of &, denoted by &, is the set of all elements of C(X) that are limits of uniformly convergent
sequences of elements of o; equivalently, & is the set of all elements of o to any desired degree
of accuracy. Clearly & is also a subalgebra of C(X).

The classical Welerstrass theorem says that if f is a continuous real-valued function on the closed

interval (a,?), then there exists a sequence of real polynomials P, such that lim P,(z)=f(z)

uniformly on (a,b), that is, the set of continuous functions on (g, 5] is the uniform closure of the

set of polynomials on (a,?b).
The Stone-Weierstrass theorem may be stated as follows:

Theorem 1, If & is a subalgebra of C(X) which contains nonzero constant functions and separates
points of X, then d=C(X), that is, the elements of C(X) can be uniformly approximated by the
elements of . More precisely, given f=C(X) and >0, there exists g=o such that su?l flx)—g(x)|

XE€.

<&, where the supremum norm | f”:suxp 1 f(z)| is given in C(X),
XE

Proof. In [2] the proof is given by four steps and the classical Weierstrass theorem is used only
in the first step, In fact, the first step is proved by using the following which is a special case of
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the classical Weierstrass theorem: For every interval (~1, 1] there is a sequence of real polynomials
P, such that P,(0)=0 and lim P,(z)=|z| uniformly on (—1, 1]. Thus it suffices to prove that

the following lemmas which make it possible to replace the special case of the classical Weierstrass
theorem. For detailed proof (from step 1 to step 4), see (2, pp.162-164].

Lemma 2. Let = and a be two real numbers with 0<x<a<i. Consider the sequence of real

numbers defined by zy=0 and z,1=x,+1/2(a*—z,%) for n=1,2,+--. Then lim z,=a.

n—oo

Proof. Note that 0<z<{z+1/2(a®—z%) <a. For, 2—2z+2a—a? is decreasing whenever 0<x<1
and z2—2z+2a—a*=0 whenever z=a. Thus from this fact we have 0<z, <z, <a, n=1,2, .
Hence lim z,=z+1/2(a*—z,?) as n—oo, This means that lim z,=a.

n—eoo

Lemma 3. For —1<x<1, suppose the sequence of polynomials defined by Py(z) =0 and P,;(z)
=P, (z)+1/2(x?~P,2(x)] for n=1,2,---. Then lim P,(z)=|z| uniformly on [—1, 1].

Proof. The given polynomials stem from the sequence in Lemma 2. Thus if we prove that
0P, (2) <Py ()< | x|, that is, the sequence of polynomials is bounded and monotone increasing,
then the result follows from Lemma 2 and the famous Dini's theorem (if lim P,(z)=|z| for

—1<z<1, then lim P,(z)=]|z] unifromly on (—1, 1J).

Clearly, 0<P,(2) <P, (x). Thus it suffices to prove that 9< || —P,.(x)<|zi<1—~l—;—l—)" for
—1<z<1 by induction. First, we have
|z] = Py (2) = |z| — Pu(2) —1/2(2*— P2 (2)]

=|z|—P,(z) -1/2[2*— P} (z)]—1/2|z| P,(z) +1/2| 2| P, (x)

=(lz|-P.(2)] (1—1/2(lx|+P.(z))]).
When n=0, it is trivial. Suppose n>>0. By induction hypothesis, 0<|z|—P,(z)<|z|. Thus we
get 0P, () |z|. Hence 1/2(|x|+P.(2)]<|x|<]1. So we can derive that |z|— P, (z) >0.
Thus 0P () <P (x) |2} for —1<x 1. Consequently, we have

|21~ Pun@< |zl =@ <2l (1--21) " (1-12L) = 2 (1__|§.L) "
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