On Essential sub-A-semimodules

by Young Bae Jun and Sang-Ho Park Gyeongsang National University, Jinju, Korea Graduate School of Dankook University, Seoul, Korea

1. Introduction and preliminaries

M. Takahashi (3) introduced the notion of \wedge -semimodules and studied elementary properties is semimodules. In this paper, we study some properties of sub- \wedge -semimodules in section 2. In section 3, we define essential sub- \wedge -semimodule and study its elementary properties.

A semimodule A=(A, +, 0) consists of a set A, a map $+: A \times A \longrightarrow A$ and an element 0 of such that always

$$x+y=y+x,$$

 $(x+y)+z=x+(y+z),$
 $x+0=x,$

or all $x, y, z \in A$.

A subset M of a semimodule A is a sub-semimodule of A if $0 \in M$ and if $x, y \in M$ implies $+y \in M$.

A semiring $\wedge = (\wedge, +, 0, \circ)$ consists of two data:

- i) $(\land, +, 0)$ is a semimodule,
- ii) (\land, \circ) is a semigroup, uch that always

$$(\lambda + \mu) \circ \tau = \lambda \circ \tau + \mu \circ \tau$$
,
 $\lambda \circ (\mu + \tau) = \lambda \circ \mu + \lambda \circ \tau$,
 $0 \circ \tau = \tau \circ 0 = 0$.

When there is no danger of confusion, we would denote $\lambda \circ \mu$ by $\lambda \mu$.

A semiring \wedge is said to be *commutative* if $\lambda \mu = \mu \lambda$ for all $\lambda, \mu \in \wedge$.

A semiring \wedge is said to have an identity if there exists $1 \in \wedge$ such that $1\lambda = \lambda 1 = \lambda$ or all $\lambda \in \wedge$.

Let \wedge be a semiring with identity 1. A left \wedge -semimodule (or briefly \wedge -semimodule) A is a emimodule A together with a map $\eta: \wedge \times A \longrightarrow A$ written $\eta(\lambda, x) = \lambda x$, such that always

$$\lambda(x+y) = \lambda x + \lambda y,$$

$$(\lambda + \mu) x = \lambda x + \mu x,$$

$$(\lambda \mu) x = \lambda(\mu x),$$

$$1 x = x.$$

$$\lambda 0 = 0x = 0$$
,

for all $\lambda, \mu \in \land$, $x, y \in A$.

For two \land -semimodules A and B, a \land -homomorphism $f: A \longrightarrow B$ is a map $f: A \longrightarrow B$ such that always

$$f(x+y) = f(x) + f(y),$$

$$f(\lambda x) = \lambda f(x),$$

for all $x, y \in A$, $\lambda \in \wedge$.

2. Sub-∧-semimodules

A subset L of a \land -semimodule A is a $sub-\land$ -semimodule of A if $x,y\in L$ implies $x+y\in L$ and if $\lambda\in\land$, $x\in L$ implies $\lambda x\in L$.

A subset I of a semiring \wedge is a left ideal in \wedge if I=(I, +, 0) is a sub-semimodule of $(\wedge, +, 0)$ and if $\wedge I \subseteq I$.

Proposition 2.1. If L and N are sub- \wedge -semimodules of a \wedge -semimodule A, then their intersection $L \cap N$ is also a sub- \wedge -semimodule of A.

Proof. If $x, y \in L \cap N$, then $x, y \in L$ and $x, y \in N$. Since L and N are sub- \wedge -semimodules of A, x+y, $\lambda x \in L$ and x+y, $\lambda x \in N$ for $\lambda \in \wedge$. Thus x+y, $\lambda x \in L \cap N$.

More generally, if $\{N_i|i\in I\}$ is an arbitrary nonempty family of sub- \land -semimodules of A, then $\bigcap N_i$ is a sub- \land -semimodule of A.

Proposition 2.2. Let $f: A \longrightarrow B$ be a homomorphism of \land -semimodules. If L is a sub- \land -semimodule of B, then $f^{-1}(L) = \{x \in A | f(x) \in L\}$ is a sub- \land -semimodule of A.

Proof. If $x, y \in f^{-1}(L)$, then $f(x), f(y) \in L$. Then $f(x+y) = f(x) + f(y) \in L$ and $f(\lambda x) = \lambda f(x) \in L$ for $\lambda \in \wedge$. Hence $x+y \in f^{-1}(L)$ and $\lambda x \in f^{-1}(L)$.

Proposition 2.3. Let I be a left ideal of a semiring \wedge and let A be a \wedge -semimodule. Then, for $x \in A$,

$$I_{\mathbf{x}} = \{ \lambda \mathbf{x} | \lambda \in I \}$$

is a sub- \wedge -semimodule of A.

Proof. For any λx , $\mu x \in I_x$, $\lambda x + \mu x = (\lambda + \mu) x \in I_x$ and also $\nu(\lambda x) = (\nu \lambda) x \in I_x$ for all $\nu \in \wedge$. For two sub- \wedge -semimodules L and N of a \wedge -semimodule A, the sum of L and N, denoted by L+N, is defined by

$$L+N=\{x+y|x\in L \text{ and } y\in N\}$$

Then L+N is obviously a sub- \wedge -semimodule of A.

Proposition 2.4. Let L, M and N be sub- \wedge -semimodules of a \wedge -semimodule A. If $L \subseteq N$, then $L + (M \cap N) \subseteq (L+M) \cap N$.

Proof. We have $L+(M\cap N)\subseteq L+M$. Also, since $L\subseteq N$, we obtain $L+(M\cap N)\subseteq N$. Hence $L+(M\cap N)\subseteq (L+M)\cap N$.

Proposition 2.5. Let S be a subset of a commutative semiring \wedge and let $\lambda \mu \in S$ whenever λ , $\mu \in S$. If N is a sub- \wedge -semimodule of a \wedge -semimodule A, then

$$N_s = \{x \in A \mid \lambda x \in N \text{ for some } \lambda \in S\}$$

is a sub- \wedge -semimodule of A.

Proof. If $x, y \in N_s$, then $\lambda x \in N$ and $\mu y \in N$ for some λ , $\mu \in S$. Then $\lambda \mu (x+y) = (\lambda \mu) x + (\lambda \mu) y =$

 $\lambda(x) + (\lambda \mu) y = \mu(\lambda x) + \lambda(\mu y) \in N$; also $\lambda(\nu x) = (\lambda \nu) x = (\nu \lambda) x = \nu(\lambda x) \in N$ for $\nu \in \Lambda$. Hence x + y, $x = N_S$ and we conclude that N_S is a sub- Λ -semimodule of A.

3. Essential sub-\(\triangle\)-semimodules

A sub- \wedge -semimodule M of a \wedge -semimodule A is called *essential* of A if every nonzero sub \wedge -semimodule of A has nonzero intersection with M.

Remark. $A \wedge$ -semimodule A is itself an essential of A.

Proposition 3.1. If L and M are essential sub- \wedge -semimodules of a \wedge -semimodule A, then eir intersection $L \cap M$ is also essential of A.

Proof. Let K be any nonzero sub- \wedge -semimodule of A. Since M is an essential of A $M \cap K$ nonzero. Hence $L \cap M \cap K$ is nonzero since L is an essential. Therefore $L \cap M$ is an essential A.

Proposition 3.2. Let L and M be two sub- \wedge -semimodules of a \wedge -semimodule A. If P and are essential sub- \wedge -semimodules of L and M respectively, then $P \cap Q$ is an essential sub- \wedge -mimodule of $L \cap M$.

Proof. Clearly $P \cap Q$ is sub- \wedge -semimodule of $L \cap M$. Let K be any nonzero sub- \wedge -semimodule of $L \cap M$. Then $Q \cap K$ is nonzero since Q is an essential, whence $P \cap Q \cap K$ is nonzero since is an essential. Thus $P \cap Q$ is an essential sub- \wedge -semimodule of $L \cap M$.

Proposition 3.3. Let A be a \wedge -semimodule, M a sub- \wedge -semimodule of A and P a sub- \wedge -emimodule of M. Then P is an essential of A if and only if P is an essential of M and M is n essential of A.

Proof. First assume that P is an essential of M and M is an essential of A, Consider any onzero sub- \wedge -semimodule K of A. Since M is an essential of A we have $K \cap M$ is nonzero, nd then since P is an essential of M we obtain $(K \cap M) \cap P$ is nonzero, that is, $K \cap P$ is nonzero. Thus P is an essential of A.

Now suppose that P is an essential of A. Since any nonzero sub- \wedge -semimodule of A has onzero intersection with P, the same can be said for nonzero sub- \wedge -semimodules of M; hence P is an essential of P, and P is nonzero. Thus P is an essential of P.

References

- [1] L. Dale and P. J. Allen, *Ideal theory in the semiring Z*⁺, Publ. Math. Debrecen 22(1975), 219~224.
- [2] J. Lambek, Lectures on rings and modules, Chelsea publishing Co., New York, (1976).
- [3] M. Takahashi, On the Bordism Categories II-Elementary properties of semimodules-, Math. Sem. Notes, 9 (1981), 495~530.
- [4] M. Takahashi, On the Bordism Categories III-Functors Hom and \otimes for semimodules-, Math. Sem. Notes, 10 (1982), 211~236.