Abstract
The addition of poly(styrenesulfonate) (PSS) to $Ru(bpy)_3^{2+}$ solutions shifted the emission peak by 3 nm to red, and increased emission intensity by 1.8 times. By contrast, poly(vinylsulfonate) (PVS) had little effect on the fluorescence spectrum. The effects of PSS on the spectral properties of $Ru(bpy)_3^{2+}$, were attributed to the presence of a hydrophobic phenyl group in PSS, which interact with $Ru(bpy)_3^{2+}$ by, at least in part, hydrophobic effect. The binding constant of $Ru(bpy)_3^{2+}$ to PSS in 0.1 M NaCl was $6{\times}10^4\;M^{-1}$, and this value was about $10^3$ times higher than those of methyl viologen ($MV^{2+}$) and $Cu^{2+}$. The Stern-Volmer constants of emission quenching of $Ru(bpy)_3^{2+}$ by $MV^{2+}$ and $Cu^{2+}$ in 0.1 M NaCl solutions were 426 and 40 $M^{-1}$, which correspond to second order rate constants($k_q$) of $1.1{\times}10^9\;and\; 1.0{\times}10^8\;M^{-1}s^{-1}$, respectively. The presence of PSS enhanced $K_{SV's}\;by\;{\sim}50$ times, whereas PVS increased the values only 1-4 times. The large enhancing effect of PSS, despite of lower charge density than PVS, was explained in terms of longer life-time of photoexcited $Ru(bpy)_3^{2+}$ bound to PSS and strong association of $Ru(bpy)_3^{2+}$ to PSS due to a specific interaction involving hydrophobic effect. The variation of $K_{SV's}$ on the concentrations of PVS and PSS were also investigated for $Ru(bpy)_3^{2+}-MV^{2+}\;and \;Ru(bpy)_3^{2+}-Cu^{2+}$ photoredox systems.