$$
\begin{align*}
& \left.\left.+4 \eta^{3}-\eta^{3}\right) \varepsilon_{0}-2(2-\eta)(2+\eta)(4+\eta)\right] \\
& \left.(2 p){ }^{n}\right\} \omega^{3}, \text { if } p \gg 1 . \tag{6}
\end{align*}
$$

The circular dichroism in the extreme critical region behaves $\sim \omega^{3}\left(n_{0} \xi \omega\right)^{n}$, whereas the circular dichroism of a fluid satisfying the Ornstein-Zernike theory shows logarithmic divergence, $\sim \omega^{3}$ in ($\left.n_{0} \xi_{\omega}\right)$.

The optical rotation, $\phi(\omega)$ may be separated into three parts

$$
\begin{align*}
\phi(\omega) & =\frac{1}{2} \omega \operatorname{Re}\left[n_{L}(\omega)-n_{R}(\omega)\right] \\
& =\phi_{0}(\omega)+\phi_{1}^{\prime}(\omega)+\phi_{2}^{\prime}(\omega) . \tag{7}
\end{align*}
$$

The first term, ϕ_{0} is due to the molecular contribution and has been given in I. The second term, ϕ_{i}^{\prime} is

$$
\begin{align*}
\phi_{1}^{\prime}(\omega)= & -\left(81 \pi^{\prime}\right)^{-1}\left(4-\varepsilon_{0}\right)\left(\varepsilon_{0}+2\right) \beta_{0} \rho_{0}\left(k_{\mathrm{B}} T \star / \xi^{\prime}\right) \\
& {\left[\left(\frac{\xi}{\alpha}\right)^{\prime+n} \psi\left(\eta, \alpha_{0} \rho_{0}\right)-\frac{\pi}{2} \frac{\left(\varepsilon_{0}-1\right)^{2}}{\varepsilon_{0}}\right.} \\
& \left.\psi\left(1+p^{2}\right)^{\frac{\eta}{2}}\right] \omega^{2}, \text { if } \alpha<\xi . \tag{8}
\end{align*}
$$

with

$$
\begin{equation*}
\psi\left(\eta, \infty_{0} p_{0}\right)=\int d x x^{n} \frac{\theta(x)^{2}}{1+\theta(x)} \tag{9}
\end{equation*}
$$

When $\xi=0, \psi$ has been given in ref. 3 and is of the order 1 for $0 \leqslant \alpha_{o \rho_{0}} \leqslant 1$. The function, $\psi\left(\eta, \alpha_{o \rho_{0}}\right)$ is also of the order 1 for $0 \leqslant \alpha_{0} \rho_{0} \leqslant 1.5$ and $0<\eta<1$. Owing to the condition $a<\xi$, the first part is dominant over the second term in the bracket of the right-handed side of eq.(8). The last term in eq.(7) is

$$
\begin{equation*}
\phi_{2}^{\prime}(\omega)=\phi_{2}(\omega)\left(1+p^{2}\right)^{\frac{\eta}{2}} \tag{10}
\end{equation*}
$$

where $\phi_{2}(\omega)$ has been given in eq. $(1,4,15)$. As discussed in I, $\phi_{1}{ }^{\prime}$ dominates over $\phi_{2}{ }^{\prime}$ in the case of $p<1$. As the system approaches to the critical point, $\phi_{2}{ }^{\prime}$ becomes more important. If $1<p<|t|^{-1}$, we have

$$
\begin{align*}
\phi_{2}^{\prime}(\omega)= & {\left[\frac{1}{3}\left(\varepsilon_{0}+2\right)\left(\varepsilon_{\theta}-1\right)\right]^{2}\left(k_{B} T_{\chi} / 16 \pi \varepsilon_{0} \xi^{\prime}\right) } \\
& \omega^{2} p^{\prime+\eta}|f| . \tag{11}
\end{align*}
$$

The magnitude of ϕ_{2}^{\prime} may be comparable to or larger than ϕ_{1}^{\prime}. In the extreme case of $p|t|>1, \phi_{2}^{\prime}$ becomes

$$
\begin{equation*}
\phi_{2}^{\prime}(\omega)=\left[\frac{1}{3}\left(\varepsilon_{0}+2\right)\left(\varepsilon_{t}-1\right)\right]^{\prime}\left(k_{B} T_{x} / 32 \varepsilon_{0} \xi^{2}\right) \omega^{2} p^{n} \tag{12}
\end{equation*}
$$

The above result independent of β_{0} may be comparable to or larger than ϕ_{0}. We refer to I for the detailed discussion of the results.

Acknowledgement. One of the authors (D. J. Lee) would like to thank the Korean Science and Engineering Foundation for finantial support.

References

111 Shoon K. Kim and Dong J. Lee, J. Chem. Phys., 74, 3597 (1981).
(2) M. E. Fisher, J. Math. Phys. 5, 944 17964).
(3) D. Bedeaux and P Mazure, Physica (Utrecht, 67, 23 (1973)

Kinetic Study on Bromine-Exchange Reaction of Antimony Tribromide with α-Phenylethyl Bromide in Nitrobenzene

Sang Up Choi ${ }^{\text {t, Young II Pae* }}$ and Sok Hwan Rhyu*
Department of Chemistry, Sogang University, Seoul 121, Korea (Received November 3, 1984)

Abstract

The kinetic study on the bromine-exchange reaction of antimony tribromide with α-phenylethyl bromide in nitrobenzene has been carried out, using $\mathrm{Br}-82$ labelled antimony tribromide. The results show that the exchange reaction is first order with respect to α-phenylethyl bromide, and either second or first order with respect to antimony tribromide depending on its concentration. It is also conctuded that a-phenylethyl bromide exchanges bromine atom with antimony tribromide much faster than other organic bromides previously examined. Reaction mechanisms for the exchange reaction are discussed,

Introduction

Previously we reported the resulte of the kinetic studies on the bromine-exchange reactions between some metal bromides and various organic bromides in nitrobenzene solution. ${ }^{1-8}$ The systems of antimony tribromide with benzyl and p-xylyl bromides in nitrobenzene solution were studied for the bromine-exchange reactions, ${ }^{7.8}$ using radioactive tracer tech-

[^0]niques similar to those utilized in the systems of gallium bromide with various organic bromides. ${ }^{1-6}$ The results of the studies on the systems of antimony tribromide with organic bromides indicated that the rates of the exchange reactions were first order with respect to the organic bromides, and either second or first order with respect to antimony tribromide depending on its concentrations. The experimental results also revealed that p-xylyl bromide exchanged bromine atom with antimony tribromide much faster than benzyl bromide. Hence, it was thought that
the methyl group in the organic bromide molecules enhanced the rate of the exchange reactions.

It appeared of interest to extend the study to the system of antimony tribromide with α-phenylethyl bromide, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}$ $\left(\mathrm{CH}_{3}\right) \mathrm{Br}$, in the hope of better understanding of the effect of methyl group in the organic bromide molecules on the rates of the exchange reactions. Thus, the present study was undertaken on the system of antimony tribromide with a-phenylethyl bromide in nitrobenzene.

Experimental Part

Materials. The solvent used in the present study, nitrobenzene, was purified by the method described in the previous paper'. By the use of usual fractionation technique α-phenylethyl bromide (Extra pure grade, TCI, Japan) was purified.

Radioactive antimony tribromide labelled with $\mathrm{Br}-82$ was prepared by the method reported previously ${ }^{7}$, using radioactive ammonium bromide produced in the nuclear reactor, TRIGA-III, of the Korea Advanced Energy Research Institute.

Experimental Procedures for Kinetic Studies. The experimental procedures for kinetic study of the bromine-exchange reaction were the same as those described in the previous paper ${ }^{7}$. The rate of the exchange reaction was calculated by the following equation':

$$
\begin{equation*}
\text { Rate }=-2.303\left(\frac{3 a b}{3 a+b}\right) \frac{d}{d l} \log \left(\frac{A_{\infty}-A_{t}}{A_{\infty}-A_{\bullet}}\right) \tag{1}
\end{equation*}
$$

In this equation a denotes the molar concentration of antimony tribromide, b that of α-phenylethyl bromidce, and $A_{0}, A_{\text {, and }}$ A_{∞} the radioactivities of the organic layer at time zero, at time t, and at time of the completion of the exchange reaction, respectively.

The values of A_{∞} were obtained by the following equation:

$$
A_{\infty}=\frac{b}{3 a+b} \cdot A_{\text {tota }}
$$

where $\boldsymbol{A}_{\text {totat }}$ denotes the total radioactivity present in both organic and aqueous layers. Then, the values of $\log \left\{\left(A_{\infty}-A_{*}\right) /\left(A_{\infty}-A_{0}\right)\right\}$ were plotted against time t. From

TABLE 1: Rates of Bromine Exchange between Antimony Tribromide and α-Phenylethyl Bromide in Nitrobenzene

Temp. ${ }^{\circ} \mathrm{C}$	$\begin{gathered} {[\mathrm{SbBr},] \times 10^{\prime}} \\ \text { mole } \cdot r^{\prime} \end{gathered}$	$\begin{aligned} & {\left[\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{Br}\right] \times 10^{\mathrm{F}}} \\ & \text { mole }-\gamma^{\prime} \end{aligned}$	$\begin{array}{r} \text { Rate } \times 10^{\circ} \\ \text { mole } \cdot+\cdot r^{\prime} \text { sec } \end{array}$	$\frac{\text { Rate }}{\substack{\left[\mathrm{C}_{4} \mathrm{H} \leq \mathrm{CH}(\mathrm{CH}) \mathrm{Br}\right] \\ \sec ^{-4}}} \times 10^{5}$
26	3.49	1.40	1.67	-
26	3.49	2.79	3.22	-
26	3.49	4.19	5.18	-
26	3.49	6.98	9.38	-
28	0.0498	6.98	0.0243	0.0348
28	0.0997	6.98	0.0483	0.0692
28	0.199	6.98	0.122	0.160
28	0.399	6.98	0.242	0.347
28	0.598	6.98	0.444	0.636
28	0.885	6.98	0.712	1.02
28	0.997	6.98	0.905	1.30
28	1.77	6.98	2.67	3.83
28	3.54	6.98	11.0	15.8
28	5.31	6.98	23.8	34.1
28	8.85	6.98	63.0	90.3

the slope of the plots, the rate of the exchange reaction was calculated by equation (I).

Results

Bromine-Exchange Reaction of Antimony Tribromide with α-Phenylethy/ Bromide in Nitrobenzene. The rates of bromine exchange between antimony tribromide and α-phenylethyl bromide in nitrobenzene were measured with various concentrations of both antimony tribromide and α-phenylethyl bromide. In each run of the experiments, good linearity was observed between $\log \left\{\left(A_{\infty}-A_{i}\right) /\left(A_{\infty}-A_{0}\right)\right\}$ and r. From the slope of the plots and the molar concentrations of antimony tribromide and α-phenylethyl bromide, the exchange rate was calculated by equation(1).The results are summarized in Table 1.

The rate of the exchange reaction was expressed by the following equation:

$$
\text { Rate }=k\left[\mathrm{SbBr}_{3}\right]^{m}\left[\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{Br}\right)^{n}
$$

In order to estimate the value of n, the \log (Rate) values obtained at given SbBr_{3} concentration (Table 1) were plotted against $\log \left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{Br}\right]$. The plots showed fairly good linearity between \log (Rate) and $\log \left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{Br}\right]$, as shown in Figure 1. Since the slope of the straight line was approximately equal to 1 , it was concluded that $n=1$.

$$
\begin{aligned}
& \text { Rate }=k\left[\mathrm{SbBr}_{3}\right] m\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{Br}\right] \\
\therefore & \text { Rate } /\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{Br}\right]=k\left[\mathrm{SbBr}_{3}\right]^{m}
\end{aligned}
$$

In order to estimate the value of m, the values of $\log \left\{\right.$ Rate $/\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{Br}\right]$ obtained at given $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{Br}$ concentration (Table 1) were plotted against $\log \left[\mathrm{SbBr}_{3}\right]$. The plots (Figure 2) did not show simple linear relation between $\log \left\{\right.$ Rate $\left./\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{Br}\right]\right\}$ and $\log \left[\mathrm{SbBr}_{3}\right]$. It would be concluded, however, that the slope of the plots seemed to be equal to 2 at relatively high SbBr_{3} concentrations, and be close to 1 in the region of lower SbBr_{3} concentrations. Hence, it seemed

Figure 1. The effect of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{Br}$] on the rate of bromineexchange reaction between antimony tribromide and α-phenylethyl bromide in m:(robenzene at $26^{\circ} \mathrm{C}(0.0349 \mathrm{ASbBr})$

Figure 2. The effect of $\left[\mathrm{SbBr}_{3}\right]$ on the rate of bromine-exchange reaction between antimony tribromide and α-phenylethyl bromide in nitrobenzene at $28^{\circ} \mathrm{C}\left(0.0698 \mathrm{M}_{4} \mathrm{H}_{3} \mathrm{CH}_{(}\left(\mathrm{CH}_{3}\right) \mathrm{Br}\right)$.

TABLE 2: Third-Order Rate Constants of the Bromine-Exchange Reaction between Antimony Tribromide and a-Phenylethyl Bromide in Nitrobenzeme

Temp. ${ }^{a} \mathrm{C}$	$\underset{\text { mole }{ }^{\left[5^{\circ}\right.}}{\left[\mathrm{SbBr}_{4}\right] \times 10^{2}}$	$\begin{gathered} \left.\left[\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{CH}_{(} \mathrm{CH}_{2}\right)^{2} \mathrm{Br}\right] \\ \times 10^{2} \text { mole }-\zeta^{1} \end{gathered}$	$\begin{gathered} \text { Rate } \times 10^{4} \\ \text { mole } \cdot F^{\prime} \mathrm{sec}^{-1} \end{gathered}$	$\begin{gathered} k_{3} \\ f \cdot \mathrm{~mole}^{-1} \mathrm{sec}^{-1} \end{gathered}$	$A \nu$.
26*	3.49	1.40	1.67	0.0979	
26*	3.49	2.79	3.22	0.0948	
26*	3.49	4.19	5.18	0.101	
26*	3.49	6.98	9.38	0.110	0.10
28*	1.77	6.98	2.67	0.122	
28^{*}	3.54	6.98	11.0	0.126	
28*	5.31	6.98	23.8	0.121	
28*	8.85	6.98	63.0	0.115	0.12
34.5	1.11	6.98	2.37	0.276	
34.5	1.66	6.98	4.88	0.254	
34.5	2.77	6.98	12.7	0.237	
34.5	4.43	6.98	30.0	0.219	
34.5	6.64	6.98	68.5	0.223	0.24

*Included in Table 1.
reasonable to conclude that the rate of the exchange reaction could be expressed by the following two equations:

$$
\begin{equation*}
\text { Rate }=k_{5}[\mathrm{SbBr},]^{2}\left[\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{CH}\left(\mathrm{CH}_{2}\right) \mathrm{Br}\right] \tag{2}
\end{equation*}
$$

(at higher SbBr_{3} concentrations; $10^{-2} \mathrm{M}$ or greater)
Rate $=k_{2}\left(\mathrm{SbBr}_{3}\right)\left[\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{CH}(\mathrm{CH}) \mathrm{Br},\right)$
(at lower SbBr_{3} concentrations; less than $10^{-2} \mathrm{M}$)

Activation Parameters of the Bromine-Exchange Reaction.

 In order to calculate the values of various activation parameters of the exchange reaction, it was required to obtain the values of the rate constant at different temperatures. Unfortunately, it was difficult to calculate the exact values of the rate constant berause of complexity of the kinetic order with respect to an-

Figure 3. Temperature dependence of $\log k_{3}$ of the bromineexchange reaction of antimony tribromide with a-phenylethyl bromide in nitrobenzene.

Figure 4. Temperature dependence of $\log \left(k_{3} / T\right)$ of the bromineexchange reaction of antimony tribromide with α-phenylethyl bromide in nitrobenzene.
timony tribromide. The values of the third-order rate constant (k_{3}) were estimated, by dividing the observed rates of exchange by $\left[\mathrm{SbBr}_{3}\right]^{2}\left[\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{Br}\right]$, assuming the rate equation (2) being correct and using the experimental data obstained at relatively high concentration of SbBr_{3}. The average values of k_{3} thus obtained at different temperatures are shown in Table 2.

The values of $\log k_{3}$ and $\log \left(k_{3} / T\right)$ were plotted against $1 / T$ (Figures 3 and 4). From the slopes and intercepts of the linear plots, the activation parameters of the exchange reaction, such as activation energy E_{a}, frequency factor A, enthalpy of activation $\Delta H^{\prime \prime}$, and entropy of activation ΔS^{*}, were calculated, based on the following equations:

$$
\begin{aligned}
& k_{1}-A \exp \left(-E_{a} / R T\right) \\
& k_{2} / T-(k / h) \exp \left(\Delta S^{*} / R\right) \exp \left(-\Delta H^{*} / R T\right)
\end{aligned}
$$

In these equations k denotes te Boltzmann constant and h the Planck constant. The results of the calculation of the activa-

TABLE 3: Activation Parameters of the Bromine-Exchange Reaction of Antimony Tribromide with α-Phenylethyl Bromide in Nitrobenzene

-1 Item	Value
$E_{a}\left(\right.$ keal \cdot mole $\left.^{-1}\right)$	19
$\log A$	13
$\Delta H^{4}(\mathrm{kcal} \cdot$ mole $)$	19
$\Delta S^{4}(\mathrm{eu})$	-1.4

tion parameters are included in Table 3.

Discussion

As a result of the present investigation it is concluded that the bromine-exchange reaction of antimony tribromide with a-phenylethyl bromide in nitrobenzene exhibits simple firstorder kinetics with respect to a-phenylethyl bromide. The exchange reaction indicates, however, complicated kinetic order with respect to antimony tribromide. The reaction kinetics with respect to antimony tribromide seem to be second order at relatively high SbBr_{3} concentrations and first order at lower SbBr_{3} concentrations.

These results are similar to those observed previously on the systems of antimony tribromide with other organic bromides. ${ }^{3.6}$ Based on the reaction mechanisms proposed previously", we now consider the following two reaction schemes for the bromineexchange reaction of antimony tribromide with α-phenylethyl bromide.
(a) In the case of relatively high SbBr_{3} concentration, it is assumed that the carbon-bromine bond in the polarized molecule of the addition compound of antimony tribromide with $\alpha-$ phenylethyl bromide, $\mathrm{R}^{\delta+}\left[\mathrm{BrSbBr}_{3}\right]^{\alpha-}$, is broken with the aid of another molecule of antimony tribromide (solvated).

$$
\begin{equation*}
\mathrm{R}^{\sigma+}\left(\mathrm{BrSbBr}_{3}\right\}^{\sigma}+\mathrm{S}: \mathrm{SbBr}_{3} \xrightarrow[\text { (slow) }]{ } \mathrm{R}^{+},\left(\mathrm{BrSb}_{2} \mathrm{Br}_{6}\right\}^{-}+\mathrm{S} \tag{4}
\end{equation*}
$$

This reaction step (4) is assumed to be the slowest step among various reaction steps of the exchange reaction, which will lead to the kinetic expression (2) written above.
(b) In the case of lower SbBr_{3} conncentrations, it is assumed that the carbon-bromine bond in the polarized molecule of the addition compounds, $\mathrm{R}^{\alpha+}\left[\mathrm{BrSbBr}_{3}\right]^{\delta-}$, is broken with the aid of another molecule of the organic bromide, to form bromonium ion.

$$
\begin{equation*}
\mathrm{RBr}+\mathrm{R}^{\sigma+}\left[\mathrm{BrSbBr}_{3}\right]^{\sigma} \underset{\text { (slow) }}{\longrightarrow} \mathrm{RBr}_{\substack{+}}^{\substack{\mid}\left(\mathrm{BrSbBr}_{4}\right)^{-}} \tag{4}
\end{equation*}
$$

This reaction step (4) ' is assumed to be the slowest step of the exchange reaction, which will explain the kinetic expression (3) written above.

TABLE 4: Summary of Data Owtained for the Bromine-Exchange Reaction between Antimony Tribromide and Organic Bromides in Nitrobenzene

Organic bromide	Kinetic order	$k_{3} \times 10^{4}$ $\mu_{\text {mole }}{ }^{-2} \mathrm{sec}^{-1}$	ref.
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{Br}$	3,2	$0.21\left(29^{\circ} \mathrm{C}\right)$	7
$m-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{Br}$	3	$0.39\left(27^{\circ} \mathrm{C}\right)$	10
$o-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{Br}$	3	$1.7\left(27^{\circ} \mathrm{C}\right)$	10
$p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{Br}$	$3,2,1$	$19 \quad\left(28^{\circ} \mathrm{C}\right)$	8
$\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{Br}$	3,2	$12 \times 10^{2}\left(28^{\circ} \mathrm{C}\right)$	$*$

3: Rate $=k_{3}\left[\mathrm{SbBr}_{3}\right]^{2}(\mathrm{RBr}], 2:$ Rate $=k_{2}\left[\mathrm{SbBr}_{3}\right][\mathrm{RBr}], \mathrm{I}: \mathrm{Rate}=k_{1}[\mathrm{RBr}]$. ${ }^{ *}$ Present study.

The result of the present study is now compared with the results of previous studies on similar systems with other organic bromides ${ }^{7.4 .10}$ (Table 4). It can be seen from Table 4 that antimony tribromide exchanges bromine atoms with α-phenylethyl bromide very much faster than with other organic bromides examined. It is speculated that the carbon-bromine bond in the polarized molecule of the addition compound of antimony tribromide with α-phenylethyl bromide can be broken much more easily than the corresponding system with other organic bromides.

Acknowladgment. The neutron irradiation of ammonium bromide was carried out in the nuclear reactor, TRIGA-III, of the Korea Advanced Energy Research Institute, Seoul, Korea. This assistance is gratefully acknowledged.

References

(1) Sang Up Choi and J. E. Willard, J. Amer. Chem. Soc., 87, 3072 11965 .
(2) Oh Chun Kwun and Sang Up Choi, J. Phys. Chem., 72, 3148 (1968)
(3) Sang Up Choi, J. Korean Chem. Soc., 14, 85 (1970).
(4) Oh Chun Kwun and Sang Up Choi, J. Korean Chem. Soc., 20. 479 (1976).
(5) Oh Chun Kwun, Young Cheul Kim, and Sang Up Choi, Bull. Korean Chem. Soc., 2, 86 (1981).
(6) Oh Chun Kwun, Young Cheul Kim, and Sang Up Choi, Buhl. Korean Chem. Soc., 2, 138 (1981)
(7) Sang Up Choi, Young II Pae, and Sok Hwan Rhyu, Bull. Korean Chem. Soc., 3. 55 (1982).
(8) Sang Up Choi and Sok Hwan Rhyu, Bull. Korean Chem. Soc., 5. 231 (1984).
19) G. Friedlander, J W. Kennedy, E.S. Macias, and ل. M. Miller, "Nuclear and Radiochemistry," John Wiley, p. 417 (1981).
(10) Sang Up Choi and Sok Hwan Rhyu, J. National Acad. Sciences, Repubic of Korea, Natural Sciences Series, 23, 97 (1984).

[^0]: *Department of Chemistry, Ulsan University, Ulsan 690, Korea

