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The dynamic properties near (and at) a stable steady state are discussed, when a chemical system relaxes from 
the unstable steady state. The time-dependent correlation length for the fluctuating variable near a stable steady 
state is explicitly obtained by introducing the probability average for the variable satisfying the rate equation. 
The study is carried out about the effect of nonlinearity on the correlation length near (and at) a stable steady state.

1. Introduction

In recent years major efforts in statistical theory have been 
directed to the phenomena far from equilibrium (or steady 
state), which exhibit instability. Such phenomena are very fre­
quently observed in many kinds of experiments, such as chemical 
reaction,1, laser2, superconductor3, biological system4 and etc.5 

The study of these pheonomena reduces to the stability of solu­
tions of the phenomenological equations of motion. One of the 
most interesting phenomena related to the instability is the relax­
ation and transition from an unstable state to a stable state. 
Suzuki6 is one of the pioneers to investigate such phenomena 
theoretically. In order to study the relaxation from an instability 
point to the equilibrium state he has introduced a time scaling 
theory that the whole range of time is divided into three regimes, 
i.e., the initial region in which the linear approximation is valid, 
the scaling regime in which the fluctuation enhancement occurs, 
and the final regime in which the system approaches the 
equilibrium state. In the scaling regime he has shown that the 
nonlinear terms in the stochastic equation can be treated as a 
singular perturbation. Kawasaki and his coworkers7 have 
presented a dynamic theory for the enhanced fluctuations in 
a time-dependent Ginzburg-Landau (TDGL) model with the 
order parameter not conserved which is quenched from a ther­
modynamically stable state to an unstable state. They have 
shown that in a certain weak coupling, long time and long 
distance limit, diffusion and saturation effects can be treated 
separately. Kawasaki and Kim8 have extended the theory to the 
chemical instability with diffusion, taking the Schldgl models 
as examples.

The purpose of the present paper is to study the time cor­
relation function f。호 the fluctuating variables due to the ran­
dom force in a chemical system with instability near (and at) 
a sta비e steady state, when the system relaxes from an unstable 
steady state. The correlation function near a steady state is usual­
ly obtained by the conventional method, that is, linearization 
of a nonlinear Langevin equation or Fokker-Planck equation 
around the steady state.9 Binder10 has defined a time-dependent 

correlation length by using the time average method for the 
variable, which obeys the macroscopic equation of motion, to 
discuss the spatial fluctuations in TDGL. In this paper we study 
a Schldgl model with two stable steady states and one unstable 
steady state. The time-dependent coit이가ion length near a stable 
steady state in the model may not be obtained by using the con­
ventional method or time average method, when the system 
relaxes from the unstable steady state to a stq미e steady state. 
Thus, we introduce the probability average for the variable satis­
fying the rate equation. The introduction of the probability 
average method enables us to calculate the time-dependent cor­
relation length near a stable steady state. This method shows 
how the time-dependent correlation length is different from the 
time-independent correlation length at a stable steady state. The 
effect of nonlinearity on the corr이ation length is investigated 
by using a renormalization method. The present work is cer­
tainly valid in the region not close to the marginal stability state 
or critical point, where the more study may be required.

The procedure of the present paper is as follows; Starting 
from the nonlinear Langevin equation, we separate the variable 
into two parts, that is, a macroscopic part which satisfies the 
rate equation and the fluctuating part due to the random force. 
At first, we discuss the statistical properties of the macroscopic 
variable by using the proper probability distribution. Then, in­
stead of the conventional definition for the correlation length, 
we use the probability average for the macroscopic variable, 
which enables us to calculate the time-dependent correlation 
length near a stable steady state explicitly. Finally, we obtain 
the renormalized correlation length near (and at) a stable steady 
state.

2. Theory

Let us consider a chemical system composed of a set of 
chemical species. If the concentration X(r,t) of reacting species 
at position r and time t satisfies a Langevin equation, an in­
homogeneous nonlinear Langevin equation is described as

t) X(/, «)] + , (f.t), (2.1)ot

where D is the diffusion coefficient, Fthe rate expression and 
v(r,t) a random force which satisfies the Gaussian condition



92 Bulletin of Korean Chemical Society, Vol. 6, No. 2, 1985 Dong Jae Lee, Moon Hee Ryu and Jong Myung Lee

<77«0>=0, < (f, i) 7) (/,iz)>=2D^(i-r). (2.2)

Here, d(x) is the Dirac delta function.
The equivalent Fokker-Planck equation to the above 

Langevin equation is

— P(X, t) = -읔又 (Z)【7，X+F (X, t)(X, t) +D으;P (X, t).

(2.3)

The rate expression under consideration is the Schldgl model8, 
which shows two stable steady branches and one unstable 
branch, given by

F(X) = aX-£X，+人， (2. 4)

where a and p are assumed to be positive constants and A a pump 
parameter.

In order to consider the effect of the random force on the 
variable, let us separate the variable into two parts, that is, the 
variable X° governed by the rate expression and a fluctuating 
part due to the random force,
x(rt t). Then, we may write eq. (2.1) by

으X° 侦，") =D【7'X° (己 t)+aX° (伫 t)
dt

t)J + A° (f, J), (2.5a)

으(巳 t)=〔D 尸 + a -3gX°(7, ()a) i) -3£X°(已 t)

x(f, t)! - fix (f, il'+S' A (/, t) + n (f, Z). (2. 5b)

where is the pumping parameter governed by the rate expres­
sion and dA the fluctuating part due to the random force.

In the following section we shall at first discuss slati마ical pro­
perties for the variate X° and then shall discuss the corr이a- 
tion function between the fluctuating variables.

The Statistical Properties for the Variable Governed by Rate 
Equation. The following equation is given at a homogeneous 
steady state.

Xs= 一 + (2. 6)

where X； denotes the value of a steady state. When the first 
order derivative of A, with respect to X： is positive, the steady 
state is stable. If 心/dX； V 0, 사】e steady state is unstable. At 
a marginal stability point, the first order derivative of As with 
respect to X； vanishes, while the second order derivative is 
nonzero. The point, which shows dkjdX； =0 and d2尢/cFX； 
=0 corresponds to the critical point. The above properties are 
expressed in Figure 1. The detailed discussion has been given 
in ref. 9. From now on we consider only the case of A = 0. 
The unstable steady state corresponds to X*  = 0, while the stable 
steady states are X： = ±(a//?)l/2.

In order to understand the relaxation from the unstable steady 
state to a stable steady state, let us substitute the homogeneous 
Schldgl model in the Fokker-Planck equation and then the 
moment of 2n order (n is a positive number) satisfies the follow­
ing equation of hierarchy

3-<X°* n> = 2n(2n- n > +2n [a n>
at

-胃 vx。"〉〕.

The fluctuation <¥o2> at time t is obtained by neglecting the 
higher order moment

<X"> =(D/a)(exp(2u)-l).

As time goes to infinity, <Xol>t becomes divergent. This 
divergence comes from neglecting the nonlinear term. This 
shows that the nonlinear term cannot be neglected when the 
relaxation from the unstable to a stable steady state is discuss­
ed. Thus, we need to solve the equation of hierarchy. Actual­
ly, Shimizu11 has used a system-size expansion method to study 
the relaxation from the unstable steady state. Instead of solv­
ing the equation of hierarchy the more efficient method is to 
obtain the proper probability distribution. Suzuki6 has proposed 
a time scaling theory to obtain the probability distribution after 
long time. Extending Suzuki*s  probability distribution slightly 
without using the scaling method, we may obtain the probability 
distribution as7-12

F(X°") =
G{X\tY r G(x\ t)\ 

-------------- X exp I 一舟小 J,2 2D (t)
(2.7)

where the prime denotes differentiation with respect to X° and 
G(X\t) and D(t) are given as

备이X”1F으郭 (X「),

D (i) = (D/a )〔exp (2a Z)- 1〕. (2. 8)

Taking the Schldgl model given in eq. (2.4), G(X°t t) becomes

G (X°, t) = exp (at) H (X ()

H (X°, £)=X°exp (-at) [1 - Xal (fi / a) (1 - exp (- 2a i)) ]- 2 '
(2.9)

X°(t)=X°(0)exp (混)〔l — X°(0)2(5/a) (1 - exp (2承))〕「蚤.

At the initial unstable steady state the distribution becomes the 
delta distribution. For short time P(X°I t) reduces to the Gaus­
sian distribution given as
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…-- 고 exP( - 스布) •
2 4 功 <x；r

After long time the distribution becomes the Suzuki probabili­
ty distribution6-7

4Cl+27一号一+…〕, 
尋）

(2. 15)

P(X°") =
G(X°)‘
即⑴〕芸

exp [—
G (X°) 2 
2DIIF 〔2. 10)

where

G(X°)=X°(l-X°'(g/a))-去，

D(£)= CD/a ) exp (2o£). (2. 11)

where P(x) is the gamma function.
As expected, C〉in the case of a2/Dp« 1 is quite different 
from the value of Xf based on the rate equation. Thus, we con­
sider only the case that a is larger than P and the diffusion con­
stant is smaller than p. The average of X°(t) depending on time 
is

<X°(t)2> = f jx° r!P(X°, t)=j(l-exp(-at))-

F(X°,t) =

As time goes to infinity, the system will finally reach a stable 
steady state, where the probability distribution may be express­
ed as12

P(Xl) = - i (—)2 exp K i (으" exp(2X))"
- a 8DB 4 泣)B

exp〔-g(xAf广〕， (2. 12)
W B

where i = /二i and (x) is the Bessel function of imaginary
argument of order * . The dependence of the probability 
distribution on time is shown in Figure 2.

Now, let us consider the rate equation with diffusion coeffi­
cient. Kawasaki dnd Kim8 have presented a theory by which 
the solution of a class of nonlinear rate equations describing 
chemical reactions with instability and diffusion are related to 
the solutions of the same questions without diffusion in a cer­
tain long time and weakly nonlinear regime. Using their method, 
the probability distribution may be obtained, replacing a in 
G(X°) and D(t) by D V2 + a. Thus, in the present paper we con­
sider ony the homogeneous case.

The average of X；L using eq. (2.12), is

<x；'〉=「dX；x£PQE읂 (1- 
丿-s Z/j （-으一） 

8D史

〕.(2.13)

In the case of a2/Dp » 1, we have

<XJ〉=응+0(으). (2. 14)
B a

When a2/Dp«}t <X°2> becomes

디ginw 2. The Dependence of P(X°,t)on Time [a = p ~ 1. and 

D = 0.1).

y（7（n）, (2. 16)

where the function Y is defined as

Y(/ (0) = 1- 侦子0슬 exp(《百) + 7 ⑴” + …； (2. 17) 

7 (Z) = /a2) sinh'ai.

As time goes to infinity, <X°(t)2> corresponds to X；'. The pro­
bability average of near a stable steady state may be ap­
proximately described as

<XWy>=XE-(备)卷 exp(-M)〕=

Xs2- e exp(- at); £ =(兰응?) z. (2.18)

The time average of X： at a stable steady state is given as follows

X?=血1須"=号. (2. 19)
—8 (J

At a stable steady state the probability average for X? is the 
same as X： and the time average of X： given by

<M〉=Wi2 = X?=§. (2.20)

We may choose any definition in the above relation to discuss 
the dynamic properties at a stable steady state. However, with 
the aid of X°(t)2 or the time average of X°(t)2 we may not discuss 
the dynamic properties near a stable steady state different from 
those at a stable steady state, when the system relaxes from the 
unstable steady state. In such case we shall approximately use 
the probability average for Xa(t)2.

The Time Correlation Function for the Fluctuating Variables, 
In this section we shall discuss time correlation functions at (and 
near) a stable steady state,when the system relaxes from the 
unstable steady state. Using the definition of the Fourier 
transform of a function,/(>;/) with respect to r and its inverse 
Fourier transform as

f (E t) = J矿exp ( - ik^f)

f (礼 £)=(2：)exp (江子)(2. 21)

eqn. (2.5b) is written as

g戸：(& Z)=-〔辨'+ 3^X" (i)a -a ) x (kt t) + 7j (£, i) (2.22)
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(2 6 J * 그 ^(^1, X (k 2 1 t) X (k 3, t) 8 (k-ki ~k2 ~^3 ),

3BX이、t) r l 、片、 ，一 .
(2龙)3 J f 一，尤(左 i,£)k(知，t) (k - ki ~ k 2)

where" means jdw Let us assume the following Gaussian- 

conditions

<x (k, 0) 77 (E,f)〉= 0 , (2. 23)

(k, tx)x(E, t2)---x(ic, m)〉=

' 0, if n is an odd integer,
sum over all the possible pair products, 

、if w is an even integer.

Let us define a time correlation function as

G (A, t, D = <x (k, t) x (Az, iz) >(y (fc-V ). (2. 24)

Neglecting the nonlinear terms in eq. (2.22) and using the first 
condition in eq. (2.23), the time correlation function G°低t) 
is given as

G0 (k, t) = <x (k, t) x (k, 0)〉= (£, 0)'〉

exp {- f dt' [Dk1 (tf )2 - a}\ (2,25)
J 0

At a stable steady state the correlation function is

G°(k,t) = <x(k.or> exp(-D(i2 + f (2. 26)

where £ is the time-independent correlation length defined as

L = *(3"； - a ) =2a/D, (2.27)

The result at a stable steady state is just the same as the previous 
result.9 With the aid of the relation in eq. (2.20) the correlation 
length at a stable steady state may be defined as follows

广 느 (3« - a ) 느 (3gXf - a ) =土 (3/9 <X：〉- a).

(2. 28)

The above relation shows that any definition for the correla­
tion length may be applied at a stable steady state. Near a stable 
steady state when the system relaxes from the unstable steady 
state, X°(02or X°(t)2 is independent of time and becomes the 
value of a stable steady state. Thus, using eq. (2.18) to obtain 
the correlation functin near a stable steady state explicitly, we 
have

G°(t, t)=<x(k,0r> exp〔一£)(F + f («)")<], (2.29)

where the time-dependent correlation length is

f。厂'=£"- (3/9 e /a (l-exp(-aZ)). (2.30)

The exponential term in eq. (2.30) may be neglected. If 邱£/at 
is not negligibly small, the above result is different from the 
previous result9, which is just the same as that at the stable steady 
state. In the case that Zpc/at is not negligibly small, we may 
consider that the region where the present result holds is also 
"near a stable steady state*  *.

Let us calculate the effect of nonlinearity on the correlation 
function. The time corr이ation function may be described as 
follows, using the standard renormalization method

G (k, t) <x (ic,0)2> exp〈—丄 d广 D〔妒+*  (3gX； (t7 )2— a) ] \

(2.31)with

X；(t)=X%)z-7&〔2X0(t) >- 으羿M (2.32)

where use has been made of eq. (2.23), the coupling between 
the nonlinaer terms has been neglected and x, (Z) is defined as

XW'Mt')*. (2.33)

It should be noted that XI (02 does not depend on k. If the first 
term in the square bracket of eq. (2.32) is larger (or smaller) 
than the second term, the effect of nonlinearity increases (or 
decreases) the correlation length between the fluctuating 
variables. Taking up to the first order of p and the most domi­
nant term, the corr이ation function at a stable steady state 
becomes

G(k,t) = < x(k,0)2> exp"D(f ：)t〕， (2.34)

where the renormalized correlation length is given by

& -Z 〜-2 9£ (2. 35)

As shown in eq. (2.35) the renormalized correlation length at 
a stable steady state is larger than the correlation length ob­
tained by the linear method. It is not possible to calculate the 
effect of nonlinearity on the time-dependent correlation length 
exactly. Thus, using the approximation method and taking the 
most dominant term, we have12

G(k,l) = <x(k,0)'> exp〔-D 膏+録⑴")！〕， (2. 36)

with 

-迫一exp （으奖） 
16宀贝a人 (2. 37)

where X°(t)2 in eq. (2.32) has been replaced by <¥°(02>. The 
time dependent correlation length near a stable steady state is 
increased by the nonlinear terms, whose effect is larger than 
사le correlation length at a stable steady state. This theory may 
be easily applied to the TDGL model without magnetic field10 
and etc.2
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Stereospecific [2 + 2] cycloadducts are obtained as major products when rra7Ls-cinnamonitrile derivatives are irradiated with 
excess tetramethylethylene. The fluorescence quenching studies, weak exciplex fluorescence, and sensitization by benzophenone 
suggest that this stereospecific photochemical cycloaddition reaction involves singlet exciplex intermediate formed between cin­
namonitrile derivatives and tetramethylethylene.

Introduction

The photocycloaddition reactions of compounds which are 
the type of C6H5CH = CXY with tetramethylethylene (TME) 
and other olefins have been reported with much attention.1-3 
Thier mechanism usually involves singlet excited state of the 
C6H5CH = CXY with ground state of olefins giving an exciplex 
and the stereochemistry of products is retention. The triplet state 
of the C6H5CH = CXY produced by sensitization gives only cis 
그느 trans isomerization and no cycloadduct is observed from the 
triplet state?

In order to investigate the mechanism of and the substituent 
effects on the cycloaddition reaction of ^rans-cinnamonitrile 
derivatives, fluorescence quantum yields, fluorescence quen­
ching by olefins, and sensitization by benzophenone of the com­
pounds are studied.

Experimental
Materials. rraws-Cinnamonitrile derivatives (w-Br, zn-Cl, 

p-Cl, rw-OCHj, p-OCH3, p-CH3, /w-NO2,/?-NO2) were syn­
thesized from corresponding Maw5-cinnamic acids (Aldrich 
Chemical Co.) by the method reported.5 Other trans- 
cinnamonitrile derivatives (p-Br, p-N, N-dimethyl amino) were 
synthesize from modified Wittig reaction in which the cor­
responding benzaldehydes were treated by the carbanion of 
diethyl cyanomethanephosphonate synthesized from triethyl 
phosphonate and 2-chIoroacetonitrile (Aldrich Chemical Co.).6 7 
These Man.s-cinnamonitrile derivatives were separated by 
column chromatography and recrystallized from n-hexane and 
methanol. Tetramethylethylene (99*%,  gold level) (TME) and 
methylcrotonate were obtained from Aldrich Chemical Co. and 
used without further purification. Fumaronitrile was also ob­
tained from Aldrich Chemical Co. and purified by recrystalliza­
tion and sublimation. All the solvents such as chloroform, 
methanol, cyclohexane were obtained from Merck Chemical 
Co..

Spectra. 'H NMR spectra were measured on Varian T-60A 
and Varian 80A spectrometers against tetramethylsilane inter­
nal standard in deuterated chloroform. Ultraviolet-visible spec­
tra were recorded on a Cary 17 spectrophotometer. Infrared 
spectra were recorded on a Perkin-Elmer Model 267 spec­
trophotometer using potassium bromide pellets and/or sodium 
plate. Fluorescence spectra were recorded on an Aminco- 
Bowman spectrofluorometer with Aminco XY-recorder.

Irradiation of trans-Cinnamonitrile Derivatives and 
Tetramethylethylene, Zrartj-Cinnamonitrile and TME in 
chloroform solution were deoxygenated by bubbling dry 
nitrogen through the solution for 0.5-1 h and irradiated for 
25-50 hrs in a Rayonet Photochemical Reactor (The Southern 
New England Ultraviolet Co.) Model RPR-208 or RPR-100 
equipped with eight 300 nm UV lamps.

Irradiated samples were analyzed by silica gel TLC utilizing 
w-hexane-dichloromethane or n-hexane - ethyl ether mixture 
as a developing solvent. The major product was is이ated by 
preparative TLC.

Determination of Fluorescence Quantum Yields and 
Fluorescence Quenching by Olefins. Fluorescence quantum 
yields ( ) of Zraw^-cinnamonitrile derivatives in dilute
solution8 were determined by eq. (1)

OD £scsdlo area under fluo. peak® ,,、

, OD 0/ €rcrdl9 area under fluo. peakT

in which the subscript s means Ma/iy-cinnamonitrile derivatives, 
r means p-terphenyl or dimethoxycoumarin (DMC) as 
references, and OD means the optical density. The approxima­
tion of cdlo—Ifl for OD < 0.05 is used. The relative fluorescence 
quantum yields of Zran^-cinnamonitrile derivatives were deter­
mined by measuring the weight of area under the fluorescence 
bands.

In order to determine the Stern-Volmer constants (k9.r) of 
fluorescence quenching, the fluorescence spectra of trans-


