Abstract
Quantum chemical calculations were carried out to explain how the electronic states of some series compounds vary with metabolic activation. Compounds studied included aromatic amines and amides, polycyclic hydrocarbons, and a few alkylating agents that do not require metabolic activation. The 1, 2 and 4 positions forming the trans-butadiene frame of a molecule, henceforth referred to as "the trans 1, 2, 4 region", have seen to be important positions for the prediction of carcinogenic activity of these compounds. It is also evident that their electrophilic properties increase with metabolic activation. That is the sum of ${\pi}$-electron densities of the trans 1, 2, 4 region in the lowest unoccupied molecular orbital (LUMO) has been found to increase in the order of precarcinogens < proximate-ones < the carbocation ultimate-ones. This is consistent with the fact that chemical carcinogens become more strongly electrophilic with activating. This region not only provides a unified view of structurally diverse carcinogens, but also predicts uniformity in their reactive sites. Accordingly, we suggest that an understanding of the trans 1, 2, 4 region would be helpful in elucidating the mechanism of carcinogenesis.