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1. Introduction

Material Requirements Planning (MRP) is currently being applied and used extensively in industry
and is being proclaimed as the solution to many of the problems of traditional production -inventory
control problems, While the latter may be true, MRP is not without its own problems, two of which
are the decision concerning the appropriate lot sizing and sequencing rules to use in order to improve
system performance,

In this paper the efficient lot sizing rule is forced to improve system performance, There are many
lot sizing rules, Among these, Wagner - Whitin Algorithm is especially efficient to handle the dyna
mic lot size with various set up costs and inventory carrying costs,

But Wagner - Whitin Algorithm is forward pass algorithm We develop backward pass algorithm, so
called LDS’s algorithm in this research, Forward algorithm and backward algorithm are not different
in basic principles but each has its own characteristics,

We test the efficiency of our algorithm by comparing with Wagner - Whitin algorithm,

2. Mathematical Model

As in the standard lot size formulation we assume that the buying (or manufacturing ) costs and

selling price of the item are constant throughout all time periods, and consequently only the costs of
inventory management are of concern,
In the t-th period, t= 1, 2,

...... R N’ we let
d.

amount demanded ( accured at the end of t-th period )
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i, : interest charge per unit of inventory carried forward to period t +1
S, : ordering( or set up) cost
X, : amount ordered ( or manufactured ) ( occured at the end of t-th period)
We assume that all period demands and costs are non -negative, The problem is to find a program
X¢= 0, t=1, 2 -+ N, such that all demands are met at a2 minimum total cost,
Of course one method of solving the optimization problem is to enumerate 2¥-! combinations of
either ordering or not ordering in each period (We assume an order is placed in the first period ).
A more efficient algorithm evolves from a dynamic programming characterization of an optimal
policy. Especially , Wagner - Whitin Algorithm is efficient for these problems. That algorithm is
forward algorithm | ordinally, So, in this paper backward - pass algorithm is developed and differ-
encies of forward aigorithm and backward algorithm are discussed,
Let I denote the inventory entering a period and [o initial inventory :

for period t then

We may write the functional equation representing the minimal cost policy for period t through

N, giwven incoming inventory I | as

min -,
ft(I) = o 130[11_11+6(X£)St+f‘*l(I+X'—d')] ................................................ (2
I+xtzdt
Where
0 i X,=0 )
(X)) = [1 o X:> Qe e e @)

In period N we have

fe(I) = min [iN—l 1+ 0 Xy )SN] T S QU PO URPR ¥ |
XN& 0
I+ xy=dy

Consequently we compute f,  starting at t =N, as a function of [; ultimately we drive f, thereby
obtaining an optimal solution as I for period 1 is specified, Theorem 2 below establishes that it is
permissible to confine consideration to only N+ 2 - t, t> 1, values of [ at period t,

By taking cognizance of the special properties of our model we may formulate an alternative func-
tional equation which has the advantage o potentially requiring less than N periods’ data to an opti-
mal program ; that is, it may be possible without any loss of optimality to narrow our program com-
mitment to a shorter * planning horizon ” than N periods on the sole basis of data for this horizon,
Just as one may prove that in a linear programming model it suffices to investigate only basic sets
of variables in search of an optimal solution, we shall demonstrate that in our model an optimal solw
tion exists among a very simple class of policies.

It is necessary to postulate that d, = 0 is demand in period | net of starting inventory. Then
the fundamental proposition underlying our approach asserts that it is sufficient to consider programs
in which at period t one does not both place an order and bring in inventory,

Theorem 1. There exists an optimal program such that [X,= 0 for all t( where [ is inventory
entering period t ),
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Proof : Suppgse an optimal program suggests both to place an order in period t and to bring in I
(i.e,, IX;>0).

Then it is no more costly to reschedule the purchase of [ by including the purchase of [ by includ

ing the guantity in X,, for this alteration does not incur any additional ordering cost and does save
the cost i,_; Iz 0.

Note that the theorem does not hold if our model includes buying or production costs which are

not constant and identical for all periods. In the latter case, economics of scale might very well

call for the carrying of inventory into period t even when an order or set up takes place int,
Two corollaries follow from the theorem,

k
Theorem 2. There exists an optimal programsuch that for al t X, =0 or % d; for some k t<
j=t
k< N.

Proof : Since all demands must be met, any other value for X, implies there exists a period t*

= t such that [X,*> 0 ; but theorem 1 assures that it is sufficient to consider programs in which

such a condition does nat arise,

The implication of theorem 2 is that we can limit the values of I in (2) for period t to zero and
the cumulative sum of demand for periods t up to N. If initial inventory is zero, then only N(N+ 1)
/ 2 different values of I in toto over the entire N periods need be examined,

Theorem 3. There exists an optimal program such that 1 if d, ** is satisfied by some X *

s t k%
>t* then d, t=t¥*+] t¥+2 .-

t** - 1 is also satisfied by X,* .

Proof : In a program not satisfying the theorem  either I for period t* is positive or I for period
t** is brought into some period t/  t**> t’/ > t* where X,’> 0 ; but again by theorem 1, it is
sufficient to consider programs in which such conditions do not arise .
We next investigate a condition under which we may divide our problem into two smaller subproblems
Theorem 4, Giventhat ] =0 for period t, it is optinal to consider periods | through t-|
by themselves, i. e., it is optimal to consider periods t through N by themselves,
Prouf :by hypothesis, (2) in period t- 1 for the N period model is

f,_, ()=  min r

i,_21+6(X,_1)St_l+ft(o)] .......................................... {5)
Xt—12 0 |5
I+xt—1’dt—1
and for the t - | period model is correspondingly
-y (I)= min [ Ty T+0(Xe-y) SM] ................................................. ..(6)
Xt-120
T4X¢—y=d

t-1

But the functional relations (5) and (g) differ only by a constant f,(0) . Consequently what is opti-
mal for (6) is optimal for (5, and by the recursive structure of the model, the latter conclusion con-
tinues to hold for all the earlier periods,

We may now offer an alternative formulation to (z), Let F(t) denote the minimal cost program for
periods t through N . Then

-1
Fit) = min [min [S, 4+ £ 8 i+ FCJ 4+ 1] Jorrorrmmeeermineemiieriieesirieeeenna )
t<j=N L h=t k=h+ J
S +F(t+1)
Where

F(t) = Sw
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FN+1) =F() =0

That is, the minimum cost for the first N- t + 1 periods comprises a set up cost in period t
plus charges for filling demand dy k=t +1, -, j, by carrying inventory from period t  plus
the cost of adopting an optimal policy in period N+ 1 through N taken by themselves, Theorem 2,
3, and 4 guarantee that at period t we shall find an optimum program of this type,

When the present formulation, (7) is computed, starting at t =N, At any period t, (7) implies that
only N- t+ 1 policies need to be considered.

The minimum in (7) need not be unigue, so that there may be alternative optimal solutions, When
we derive F(1), we shall have solved the problem for | is the last period to be considered,

Finally we come to what is perhaps the most interesting property of our model,

The Planning Horizon Theorem,

If at periods t** the minimum in (7) occurs for j=t**¥z t* then in periods t< t* it is
sufficient to consider only t< j< t**, In particular ,if t*=1t** thenit is sufficient to con-
sider programs such that X, **> 0,

Proof : Without loss of optimality we restrict our attention to programs of the form specified
in theorems 1 - 4. Suppose a program suggests that d, *** is satisfied by X, , where t***>
t**> t*> t, Then by theorem 3 d, * is also satisfied by X, . But by hypothesis we know
that costs are not increased by rescheduling the program to let d ** be satisfied by X, * > 0,

The planning horizon theorem states in part that if it is optimal to incur a set up cost in
period t* when period t* through N are considered by themselves, then we may let X, *>
in the N period model without foregoing opti mality, By theorems 1 and 4 it follows further
that we may adopt an optimal program for periods t* through N considered separately,

3 the Algorithm

The algorithm at period t* t* =N, N—1, N—2... 2, 1, may be generally stated as

1. Consider the policy of ordering at period t*, and filling demands dy, t=1t* t*41...
t** by this order,

2. Determine the total cost these (N—t* + 1) different policies by adding the ordering and hold-
ing cost associated with placing the order at period t* and the cost of acting optimally for periods
t*+ 1 through N considered by themsel ves,

3. From these (N—t*+ 1) alternatives, select the minimum cost policy for period t* through N
considered independently,

4. Proceed to period t*— ] (or stop if t*=1),

Table 1 portrays the symbolic scheme for the algorithm ., The notation (t*, t*4 1, e , t¥¥)
PEE L, tFR LD e , N in Table 1 indicates that an order is placed in period t* to cover the de-
mands of d,, t=t* t*+ L tF 42 e ,t*¥* and the optimal policy is adopted for periods t** 4 1,
tR* L2 e , N considered separately. At the bottom of the table wé record the minimum cost
plan for periods t* through N,

In general | it may' be necessary to test N policies at the first period, implying a table of N(N+

1) /2 entries (versus 2¥! for all possibilities),

As we shall see, the number of entries usually is much smaller than this number if we make full

use of the planning horizon theorem .
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Table 1. Computation Procedure of LDS Algorithm

Month N N-1 | N-2 | N—3 1 1
Ordering cost Sv i Sy-i Sn-2 ‘ Sn-3 S,
Demand dy i dy-1 dy-2 dN—3A_¥7 i d
It+1, t4+2, N | (N N—p N |N=2, N=1, (N=3), N-2 N-1] (1) 2, 3N |
t,t+1Dt+2t+3-N L(N— 1L N) N N | (1,2) 3,4--N
¢, t+L,t+2)t+3, (N=2,N—1) (N-3N-2) N-1 N (1,2,3) 45 |

t 4+4---N Ni(N_&N_g, N=1), | oo | e N‘
(t, t+1,t+2,t +3) (N—2,N—1, N)I N (1,2,3.4) 56
t+4 N ‘ | (N—3, N—2, N—1, e e N
| | Ny

|

Minimum Cost ‘

Optimal policy |
L(t' t1, e N) NHJ(N—1, N) [(N=2,N—1, N) %(N—S,N—-Z,N—LN) (1,2, 3, : N)J

4 LDS’s backward Model and Wagner - Whitin's forward Model .

Wagner - Whitin's algorithm is a efficient forward algorithm for a solution to the following dynamic
version of the economic lot size model is given: allowing the possibility of demands for a single
item, inventory holding charges, and set up costs to vary over N periods, We desire a minimum to-

tal cost inventory management scheme which satisfies know demand in every period,

Qur backward algorithm is not different from Wagner- Whitin's forward algordthm in fundamental
principles, But computation procedures are different each other,

a . Wagner - Whitirl s forward Model,

F(t) =min[min [sj+ 5% dade + FG-D] ]

t—-1 t

h=j k=h+1

Two algorithm are summerized as follows :

; the minimal cost program for period 1 through 't

!

S, + F(t=1) )

F(t)
1si<t
Where
F(1) =5,
FC0) =10

ji—1 j
F(t) =(min min[sm 5 % ad + FCi+ D))

computed, starting at t = |
b,

h=t k=h+1

S, + F(t+1)

LDS s backward Model
F(t)
t<jsN
Where

F(N) = Sy
F(N+1) = F(:) =0

computed, startingat t =N.

; the minimal cost program for period to t through N

P

J



94 ol -olE A
5. An Example

Table 2 presents a sample set of data for a 12 month period; Table 3 contains the specific
calculation and compares LDS s Backward Model with Wagner - Whitin's for ward Model,

Table 2 Data for a 12 month period

month (t) d, S, i,

1 69 85 1

2 29 102 1

3 36 102 1

4 61 101 1

5 61 98 1

6 26 114 1

7 34 105 1

8 67 86 1

9 46 119 1

10 67 110 1

11 79 98 1

; 12 56 114 1
l Average 52.5 102.8 1

Table 3 Wagner - Whitin’s forward algorithm and LDS’s backward algorithm .

Month t 1 2 3 4 5 6 7 8 9 10 11 12

Ordering

cost 85 | 102 | 102 | 101 98 | 114 | 105 86 119 | 110 98 | 114

Demand 69 29 36 61 61 26 34 J 67 45 67 79 | 56
________________________________________ < e R N

114 | 223 1277 | 348 | 401 | 4% | 572 | 6 | 741 | 789 | 864
186 | 345 | 399 | 400 | 469 | 630 734 | 901
L 369 | 502 | 670
Vs
o 8 | 114 | 186 |277 | 348 | 400 | 469 | 555 | 600 | 710 | 789 | 864
Optimal
iy * 1 | L2 1L.23(3.4 |45 |456(567 8 |89 | 10 1011|1112
ol | 852 | 790 | 688 | 641 | 614 | 500 | 426 | 383 | 264 | 212 | 114
864 | 826 | 750 | 705 | 624 | 543 | 512 | 395 | 340 |303 | 154
814 | 87 74 | 587 526 | 419 301
956 711 I
TMinimum | T O I R S e IR
cost 864 | 825 | 750 | 683 | 587 | 543 | 500 | 3% | 340 | 264 | 154 |1l4
1 Optimal
| policy ** (1,2)((2,3)/(3,4)] (4) (5,6.7,¢6,7)| (1) [(8.9)](9. 10 (10) (11, 12) (12)

1. Wagner-Whitin's forward algorithm
2. LDS’s backward algorithm
Only the last period is shown ;
* 5,6,7 indicates that the optimal policy for periods 1 through 7is to order in period 5to
satisfy ds , dg,and d7,and adopt an optimal policy for periods 1 through 4 considered
separately ,



TRRRE Bes $128 19854 128 95

*% (5,6,7) indicates that the optimal policy for periods 5 through 12 is to order in period
5 to sétisfy ds, dg, and d,, and adopt an optimal policy for period 8 through 12
considered separately,

g. Conclusion

One of factors which are able to improve the system performance is selection and development of
the efficient lot sizing rules in MRP, Among many lot sizing rules using widely,K Wagner - Whitin
algorithm is specially efficient to handle the dynamic lot size with various set up costs and inven-
tory carrying costs,

Our algorithm developed by revising the important principles of Wagner - Whitin algorithm | is
backward pass algoritnm. So our algorithm and Wagner - Whitin algorithm is not different in the
basic principles, Buat forward algorithm and backward algorithm have its own characteristics,
respectively, In computation structure backward algorithm is convenient for changing initial periods
in contrast with forward algorithm being convenient for changing last periods of planning borizon,
In our example our backward algorithm is more efficient than Wagner - Whitin forward algorithm
in computation

This phenominon is not general and appears differently case by case, But this phenominon indi-
cates that our backward pass algorithm is not always more efficient than Wagner - Whitin for-
ward pass algorithm, however at least in more effident than foreward algorithm in some cases,
Therefore our algorithm is valuable sufficiently, Especially, MRP system has possibility of chang-

ing the demand in initial periods before performing some planning, In this case, backward algorithm
will be more useful.
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