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Laplace’s Method for General Integrals with
Applications to Statistical Mechanics
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ABSTRACT

This paper extends the results of Ellis and Rosen (1982a) to some more general
integrals and applies our main theorem to compute the specific free energy of some
models in statistical mechanics. The general integrals of this paper mean the
integrals with respect to the probability measures induced by the sample mean of n
i.i.d. random variables taking values in a separable Banach space.

1. Introduction

Classical Laplace’s method for Rieman integrals on R' (see Murray(1984)) yields

lim (1/n) 10g§°_° flx)e e @ dx=—inf{g(x)} 1.1

=0 Lx K

for some continuous functions f(x) and g(x) on R!. Schilder (1966) and Pincus (1968)
extended (1.1) to the Gaussian integrals on C[0,1] (the space of real-valued continuous
functions on [0,1]). Donsker and Varadhan (1976) considered the Laplace’s method for
Gaussian integrals on a separable Banach space. Recently Ellis and Rosen (1982a) dealt

with the Laplace’s method for Gaussian integrals on C[0, 1] of the form
_ ~nF. (3 e

where @, is a mean zero Gaussian measure on C[0,1] such that @,.=& (. converges
weakly to @) for a mean zero Gaussian measure @ on C[0,1] and {F.} is a sequence

of suitably bounded and continuous real-valued functions on C[0,1] which tend in some
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sense to a function F on C[0,1]. Their main theorem which is an extension of the
results of Schilder (1966) and Pincus (1968) states that .
(1/m) log A"—’;Ci{%f,u{F(yHl‘?(y)} 1.2)

as n—oo, where I is the entropy functional of @ which is defined in the next section.

The purpose of this paper is to extend the Ellis and Rosen’s main theorem to some
more general integrals. Our main theorem is an extension of (1.2) and unify (1.1) and
(1.2). The assumptions of our main theorem are simpler and shorter than those of the
Ellis and Rosen’s main theorem. We also produce some limit theorems which are related
to the main theorem. Finally we apply our main theorem to compute the SFE (specific

free energy) of some models in statistical mechanics.

2. Main Results

Let V be a separable Banach space equipped with its Borel o-field &, {v.} be a

sequence of p.m.’s on(V, &) such that v,=v for some p.m. v on (V, &) and for all
a>0,
sup ve““"“a’vn(x) oo 2.1

n21
‘where ||-|| denotes a norm in V.

The entropy functional of v is defined by
L(y ZGSEI{,Q {0(9)~¢(6)} 2.2)

for y=V, where V* is the dual of V and
$.(0) =log | & dy(x). (2.3)
When V=CI[0,1] and v=@, it can be shown

%<y, A y>, for y&= @ (domain of A~')
Io(y)= .

) , otherwise (2.4)
where A is the covariance operator on L2[(,1] corresponding to @ and {(-,-)> is the
L2-inner product.

Let Xi*, ...X." be # i.id. V-valued r.v.’s (random variables) with common p.m. v,
and v, be the p.m. induced by Xn:(l/n)i X
i=1
The following theorem is our main result. The principal ingredients in the proof of

the main theorem are a large deviations theorem due to Bolthausen (1984) and a limit
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theorem in Varadhan (1966).

Theorem 2.1 Assume the followings;

(A1) There exist positive constants «, 8,7, not depending on #, such that for all
sufficiently large # and all {>7, v."(¥;|yl2>1) <ae "4,

(A2) {F.} is a sequence of real-valued functions in V such that for all sufficiently
large # and all yeV, —F.(y)<<a+blly||* for some {inite constants ¢ and &
(0<6<0).

(A3) For any y=V with L(y) <oo and for any sequence {y.} with y.—y as #—oo,
F.(y.)—F(y) for some real-valued function F on V.

Then

lim (1/) log jve-wwdun"( ) ==int{F(3)+L(»). 2.5)

Proof. According to Bolthausen's large deviations theorem, Theorem 5.2 in Donsker and

Varadhan (1976) and Theorem 3.4 in Varadhan (1966), it suffices to show that

lim fm (1/») logS ey, (y) = — oo (2.6)

{»;i=Fn(y)2L)

Since by (A 2) for all sufficiently large »

5‘ e—nF,l(y)dvnn(y)
(¥i=Fa(y)2Ll})

§S eratbizIngy, n( y)
iyl 2z(L-adsbl

it suffices to prove

lim lim (1/#) log o191y, (3) = — oo,

L=oo p~co (riilyli22L)

Let @.=v.,»T"%, that is @.(B)=v.,"[T~(B)] for any B&.%, where T(y)=| »i|? for all
y=V and let G.(¢) =Q.(—oo, t1=v."(y;l yl12<E).
Then

eﬂb”:v” 2dyn”(y) :jje"btdQn (t)

S(y: iyl 221}y

=[CedG. vy ={ ewdl—PUX.I>1)]

=—eP(|X.2> 1) ’j+nb5re"“P(H)_(,.H2>t) dt.

The second equality is by change of variable and the last equality follows from the

integration by parts. Since

0<lim e P (|| X.l>>¢) <lim ae*®~#¢=0 and
t-oo t-oo
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e P (| Xal12> L) <a er L py(A 1), we have

J<a eﬂﬂfﬂﬂ+nb51°enbfP([|Y,.||2>t)dt

< en(b—ﬁ)L+nba5wen(b—ﬁ)tdt
- L

=Lla+ba/(f—b)le~t-PL
for all sufficiently large L. Therefore
lim (1/m)log Jo<(b—p)L——oco as L—co

since 0<b<8 and a>0. Q.E.D.

Corollary Let u, be the p.m. induced by the sample mean of # iid. V-valued
r.v.’s whose common p.m. is g on (V, #). Assume that (A2) and (A 3) of Theorem
2.1 hold. Suppose (A1) holds when we replace v,* with g~ Then

lim (1/n) log| e dur(5) =—in (F () +L(»)}. @7

Remark 2.1 If V=C[0,1], »=Q, and v=@Q, then (1/¥7%)>_X"and X,* have the
same probability distribution €. and vn"(y;Hyi]2>t):P(]IX1"1llz> nt). Thus (Al) is
satisfied by Bolthausen (1984) or Ellis and Rosen (1982 a). Also for any B&.%F, v."(B)

=P(X"evuB)=Q.(+%B). Therefore (2.5) reduces to (1.2) so that Theorem 2.1 is
an extension of Ellis and Rosen’s main theorem. It should be noted that Theorem 2,1 does
not need Hypothesis 3.3 in the Ellis and Rosen (1982a).

Theorem 2.2 Let v, v.,”, v, F and {F,} satisfy the hypotheses of Theorem 2.1.
Define

Sse-nFn(y)dvnn (y)
‘S.Ve-nF,.(y)dvnn (y)

Wa(S)= (2.8)

for any Borel subset S of V. Assume that 4is a closed subset of V such that for some
>0,
iQE{F(y) +1.(3)} -irsl‘f,{F(y) +1.(»}>0.
Then W.(A)<<e »* for all sufficiently large #.
Proof. Let d2.(y)=e "%dy,*(y). Then by Theorem 3.5 in Varadhan (1966),
}E(l/n) log Zn(A)S—yi{:lf {(F(»+L(n}.

Hence by Theorem 2.1,
lim(1/n) log W.(A)=Iim(1/n) log L(A)—lii(l/n) log 1, (V)
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S—yigAf{F(y)JrI»(y)}+yig‘§{F(y)+L(y)]£—5.
Therefore (1/#) log W.(A)<—48 for all sufficiently large #». Q.E.D.
Theorem 2.2 is a generalization of Theorem 1.3 in Ellis and Rosen (1982 a).
Theorem 2.3 Let YV, be a V-valued r.v. whose probability distribution is W, in
Theorem 2.2 and let G(»)=F(3)+L(») have a unique minimum point y*. Then Y,
converges in probability to y*.
Proof. For any bounded real-valued uniformly continuous function g on V,
5 L e @dvr(3)
Y Ne)) n
Sve dv."(3)
as n—oo by Theorem 3.6 in Varadhan (1966), where J. denotes the degenerate distri-
bution at x. Hence Y, converges in probability to y* by Theorem 2.1 in Billingsley

(1968). Q.E.D.
The above theorem is a generalization of Theorem 2.5 in Ellis and Rosen (1982b). If

—g (5% =§Vg (y)doy*

F=(, then nY, is distributed like the sum of # i.i.d. r.v.’s whose common probability
distribution is v.. This sum is an important quantity in a model in statistical mechanics.

Ellis and Rosen (1982 b) have studied in great detail the central limit theorems akout
Y, when v, is a mean zero Gaussian measure on a Hilbert space and F.=F for all ».
Studies on central limit theorems about Y, for a general p.m. v, on (V, %) seem intere-

sting. However this article does not consider this topic which seems difficult to solve.

3. Applications to Statistical Mechanics

In this section we compute the SFE of the models in statistical mechanics by applying

Theorem 2,1,

3.1. Generalized Curie-Weiss Model

Let p be a p.m. on R' satisfying

Swmecxzdp (x) <OO (3. 1)

for all ¢>0 and let {X;” ;i=1,...,#} be a triangular array of dependent and identically

distributed r.v.’s with the joint distribution given by



)
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2™ texplgy { (2w -+,) m 1 TTdp () 3.2)
where ¢, () is the cumulant generating function of some r.v. Y whose probability
distribution is g on (R!, %) and

znzfmexp[n D { (HyFo-+x0) /n}]ﬁdp (x:) 3.3

is the normalization constant. X;™ represents the spin or magnetic moment of the
individual atom at i-th site in a magnetic crystal. The Curie-Weiss model is the special

case of (3.2) when Y is standard normal r.v.. Note that it can be easily verified that

zn:S:eXPE—n{—¢p(y)}]dﬂ"(y)~ 3.4
We define the physical quantity
f(p):—l"ip;(l/n) log z. (3.5)

known as the SFE of the model.
For mean zero bounded r.v. Y we can show wu satisfies (A1) in Theorem 2.1 by the

result of Prokohrov (1968). Since for any z>>0

xy<(z/2)y*+ (x*/2¢) for any x,y in R,

G () <(z/2)y*+ logS:e”““d 0(x)
and thus F.(¥) =—¢,(») satisfies (A2) in Theorem 2.1. Hence for mean zero bounded
r.v. Y,

F(@)=—lim(1/n) log|__ew»dp(3)

:_Wi?f(w{[u(y) — (3} (3.6)

by applying Theorem 2. 1.
Example 3.1 Let Y have the symmetric Bernoulli distribution p=(1/2)d_,+ (1/2)9;.

Then the joint distribution in the generalized Curie-Weiss model becomes
zo~[cosh {(xy++++%a) /n}]"]f[ldp ). (3.7

, /2 {1+»log(1+y) + (1—MNlog(1—»}, if [y <1
Since 1,(y)=
co , otherwise

» f(p) =Inf[(1/2) {(1+9)log (1+5) + (1=2)10g (A=)} =, ()]

by (3.6).
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3.2 Circle Model

Ellis and Rosen’s main theorem was inspired by the circle model. We first define the
circle model, then compute the SFE by applying Theorem 2. 1.

Let 4={y=C[0,1] ; y(0)=y(1)} and let @, {Q.} be mean zero Gaussian measures on
4 with covariance functions o(s,£), {o.(s,)} respectively such that @,=&. The circle
model is defined by

27lexpl (1/2) 252 (1/manifm, j/m) 2 SOHL w20 Tidp (), (3.8)
where p is a p.m. on R! satisfying (3.1), {H.} is a sequence of functions on 4 such:
that H,—H uniformly for some function A on 4 and

2a= [ eXPL(/D 252 (1/2) 0 i/, /) 2w+ SH, ) 2 TTdp (3.

Define
Foly) == A/m) 0Ly G/m) + Hui/m)].
Then
ze={§ exo[ oUW/ vy ilm 3 Ha i) 23 [d4Q0 () Tidp ()

- 5 45 Rnexp[é (1/ V7)) yG/#) x:+ H, i/ n) x5} ]}ifldp (x)dQ.(»)
= exol—nF.(5)1dQ. (v 7)

= Lexp[—nF,. ()1dQ. (),

where Q. is the p.m. induced by the sample mean of # i.i.d. r.v.’s whose commor
probability distribution is .. By Remark 2.1 and a result in Bolthausen (1984, p428),
Q. satisfies (A1) of Theorem 2.1. Ellis and Rosen (1982a) showed that —F.(y) <ae+
bl )2 for any &>0 and some >0 for all # and hence F,. satisfies (A2). Finally F,
satisfies (A 3) with F(¥) :—S:gb,,[y (u) +~H ()] du (Ellis and Rosen (1982 a) ] and hence:
all the hypotheses of Theorem 2.1 are satisfied.

Therefore
f() =~1im (1/n) log e™"dQ." ()

=325{F(y) +I ()} =ir&}£{F(y) +(1/2) <y, 479>}
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and this coincides with the result of Ellis and Rosen (1982a). The last equality follows
from (2.4).
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