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ABSTRACT

Cyclic Factorial Association Scheme (CFAS) for incomplete block designs in a
factorial expariment is defined. It is a generalization of EGD/(2°—1) -PBIB designs
defined by Hinkelmann (1964) or Binary Number Association Scheme (BNAS) named
by Paik and Federer (1973). A property of PBIB designs having CFAS is investigated
and it is showa that the structural matrix NN’ of such designs has a pattern of
mu'ti-nzszed block circulant matrix., Thas ganeralized inverse of (rI—NN'/k) is obtained.
Ganzralizad Cyelic incomplete block designs for factorial expariments introduced by
Jon (1973) are presented as the exanples of CFAS-P3IB d=sigas. Finally, the relation-
ship batwzzn CFAS and BNAS in block designs is briefly di scussed.

1. Introduction

In a factorial expertment with » factors Fi, ..., F, at m,, m,,...,m, levels respe-
ctively, consider the following association scheme: The two treatment combinations (i,
D2y eeer 1) and (JisJay vees Jn) are (p1, b2y --» D) th associates, where p:=0,1,..., mz—1 for
k=1,2,...,m, if

(1 Tay vues Bn) = (D1 D2y wves Do) = (s T2z eves ) (1.1
where i+ pr=j: mod mx (k=1,2,..., n). This association could be called a “Cyclic
Factorial Association Scheme (CFAS).” The relationship in (1.1) implies that two tre-
atment combinations (i, Za, ..., #») and (i1—py, iy—Day --ry In—Da) are also (D15 Doy oves D)
th associates, because (i;—p1, Ta—Dar oes In—Dn) + (D1s D2y vv0s Dr) = ({1, T3 oy ). In @ block

design, A(pPy, Pas eees Pn) will denote the number of times these treatments which are (pi,
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Da..., pu)th associates each other occur together in a block.

Cyclic Factorial Association Scheme is a generalization of EGD/(2%"!)-PBIB designs
(EGD means extended group divisible) defined by Hinkelmann (1964) or Binary
Number Association Scheme (BNAS) named by Paik and Federer (1973). The relation-
ship between CFAS and BNAS in incomplete block designs is discussed in Section 6.

We will investigate a property of Partially Balanced Incomplete Block (PBIB) designs
having CFAS and the structural property of the designs which is related to the block
incidence matrix N of the designs will be termed Property C. In a PBIB design, it can
be shown that if the design has the CFAS the structural matrix NN’ has a pattern of
multi-nested block circulant. In Section 4, we will discuss about the inverse of the
multi-nested block circulant matrix. Generaltzed Cyelic incomplete block designs for
factorial experiments introduced by John (1973) are discussed as examples of CFAS-
PBIB designs in Section 5,

2. Preliminaries

In the factorial experiment considered in the previous section, the number of treatment

combinations is v=TIm. Let the ith treatment combination be denoted by the n-tuple
1

(1 12y oony Bn), Where 4,=0,1,...m,—1 for all $=1,2,...,n. Treatment combinations are
written in lexicographical order, i.e., the subscript corresponding to the last factor is
changed first, and are isomorphic with treatments 0, 1,...,v—1. The relationship
between the order of treatment 7 and the corresponding treatment combination can be
expressed by

i=[5(, T )i i @.1)
Let the v treatment combinations be allocated to & blocks each of A plots with the ith
treatment replicated 7 times. The usual intra-block model will be assumed, namely

Yu=protfitea; ((=0,1,...,v—1; j=1,2,...,5), 2.2)
where y; is the yield of the plot in the Jjth block to which ith treatment has been
applied, p is a general mean, z; is the ith treatment effect, 8; the jth block effect and
the €; are independent normal variates with zero means and homogeneous variances
o Let T: be the total yield of all plots receiving the jth treatment and B; the total

yield of all plots in the Jjth block. The incidence matrix N is defined to have a row
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for each treatment and a column for each block and the elements represent the number
of times each treament occurs in a block.
The reduced normal equations for the treatment effects in the intra-block model

eliminating blocks, are

At =@, (2.3)
where

A=rI-(1/R)NN'

Q=T-(1/k)NB (2. 4)
and where # is the intra-block estimates of z=(zo, 71, Zo-1)’. NOW, suppose that the
block design is a PBIB design having CFAS in a My X My X -0 X ,-factorial experiment.
In this case, by definition, (1) with reference to any specified treatment, the remaining
v—1 fall into m(say) sets, the (py, Pz -+ Pn)th set of which occurs with the specified
treatment in A(py, pa, +++, P») blocks and contains #(pi, Pa, -+, p) treatments, the numbers
A(P1s P2y =5 D) and #n(py, Pz o=, pn) being the same, respectively, regardless of the tre-
atment specified, (2) if we call the treatments that lie in a block A(py, pa, +*-, Pn) times
with a specified tratment 6, the (P, P2, p.)th associates of 6, the number of tre-
atments common to the (pi, P2, *e, pa)th associates of ¢ and (gi, g2+, ga) th associates
of ¢, where 6 and ¢ are the (i, ks, ++-, ka)th associates, is p(ky, karess Ba) [ (ss P2y oo, Do),
(15 @z *+*» gw)» this number being the same for any pair of (k& -, k.)th associ-
ates.
Note: If two treatment combinations (i1, 2, *oy Bn) @A (F1, 72 oo0, ju) Are (Po, oy +oe, Pn)th

associates in a PBIB design the following should also hold:

(jnjz;"', ]ﬂ)+(plyp2)"',pn):(il) i2,""in), (2- 5)
where ja+pi=is mod mu (B=1,2,+,%). So, from (1.1) and (2.5)
2(i1_j1,i2‘j2,"‘a in—jﬂ):)‘(jl—ilij_iZ’"')jn_in)- (2- 6)

3. Property of Cyclic Factorial Association Scheme PBIB Designs

Consider a CFAS-PBIB design in a factorial experiment and let NN'=[2:], i=0,1,
v—1; j=0,1,-,v—1, then it is well known that if the ith treatment and jth treatment
are (py, P, ..., Pa) th associates Ais=A(P1, Doy = Pw). In an m, X m,-factorial experiment,
the square matrix NN’ can be partitioned as

NN'=[M(is,j)3, ,71=0,1, - m—1, 3.1
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where M(iy, j,) are m,xm, square matrix. Let MGy, j) =M. G0y 7)), 42 2=0, 1, e, Wy—
1, and suppose #;+p,=7, mod m,, and Ly+p2=jf, mod m,, for I3, J2=0, 1, -, m,—1, then
My, (2, 72) =A(p1, p2), where p, is a constant but D: varies according to the values of
i and j, If the design is PBIB with CFAS the A/ (#1,41) becomes a circulant matrix.
That is

R(Du0) A puy 1) A pry #y—1) -
My, 7)) =| A0y m=1)2(py, 0) -+ A( 1, 11,—2) ;

AL 1) A(p1,2)  A(p1,0) J
Furthermore M@ +1,7,41) =My, §,) mod my for #;+1 and j,+1, since if L+p=7,
then i, +1+p,=7,+1 mod m,.

Therefore, we can say that matrix N\’ is a doubly (or second order) nested block
circulant matrix.

The extension to the multi-factor experiments is straightforward. In an m, xXm,x -
X m.-factorial experiment with PBIB design having CFAS, the structural matrix NN”
can be partitioned as follows

NN'=[M(@, )1, i, 71==0, 1, -, m,—1,
My, j0) = [Miss oy §2) 1, iy f2=0.1, -, 11,1, (3.2)
Misiseicin sy irierning (n_s, Jred) =[Misiaeecin iy 5iiaenesns Gy 3) 1,
fny Jn=0, 1, e, 1,1,
A(p, 0) 2D, 1) e 2( py 1, 1)
AP, mu—1) 2(p,0)++ 2( p, m.—2)
Miviooiincss tiigeesnsGon ) = eeerveraenn ,

2(p72) Z(Z’,3)"'2(py 1)
z(p:l) 2(112)"'2(17,0) J

where p= (D1, D2reeey Puy), that is Ty, 05y ooey Tny) + (D1 D2y »oy Puy) = (J1sJ2 **, 7u_1), where
Lat-pa=ji mod m, (k=1,2, -, n—1). Clearly M:,:,eiuin_,, srizeenina(Iny Jn) IS @ circulant
matrix. Also, since (iy, iy -eeyiu ;1) = (D1 b2y *+y ut) = (Jis oy oy Jror £ 1),
Miiiaeiicinan sy f17zeeeCinoae 1) (ny Fn)
=Misiaeeiinsy jiizeeeins (iny J2) mod Mn_y for 4, +1 and j,_ +1.
Therefore, M iyuuuin,, juizeseinca(In_1, fu_1) 18 & second order nested block circulant matrix.
Extending this argument to the vxv matrix NN in (3.2), we may understand that the

matrix NN’ is an nth order nested block circulant matrix.
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Let R, is defined to be an nxn circulant matrix whose first row has unity in the
ith column and zero elsewhere, where i=0,1,+,7—1, then the circulant matrix
mO m1 ---Wl,._z mn_l

My Mg oo Mn_z Mao
;\/[: {mo, My, ﬂln—l}: /(] 0 n-3 n-2

Wy My Moy Ml

can be written as
n-1 )
A[: Z Wlan‘.

i=0

Let Mi= (i, #iyy oy iy o1} and M= {M, M, -, M.}, ie, Mis an mnxmn second
order nested block circulant, then
g n-1 . m—1 .
M= > m,-,-R,.’, A/[:ZRm‘@L%,
i=0 i=0
where ® denotes the right Kronecker product of matrices, so
ma1 n—1
M="$ R&( SR
i=0 i=0
m—1n-1 . N
:Z Zminm'® al
i=0 ;=0
Extending the same process to the nth order nested block circulant matrix NN in (3.

2), it can be written as

mi—1 m2—1

NN S G 1) (TTORY),

i1=0 i2=0 in=0 =

where A(i,is ¢+, 0s) are constants which correspond to the first row elements of
NN and TIQRY,= Ry, @Rz, O ORy.
i=1

The structural property of matrix N or NN’ which is described in (3.3) will be

termed Property C.
4. Inverse of Multi-Nested Block Circulant Matrix

A solution to the normal equation (2.3), for connected designs, is given by
t=Q4Q, .0
where Q is any generalized inverse of A, that is, satisfies AQA=4. We can take
Q- '=A+], where / is the vxv matrix with all elements unity, and it can be shown
that Q— (1/0%)] is the Moore-Penrose’s generalized inverse of A. In a CFAS-PBIB

design, the matrix NN’ has the structural Property C, so the matrix (A-+/) also has
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the Property C. Let

A+J=E B S el iy i) (TLORE). “.2)

We will prove that the matrix Q also has the following form

Q=% T B el iy, in) (TLORY) 4.3)
i1=0 i:=0 in=0 i=1

for some constants C(i1, 25y oeey 1)

Suppose (A+])Q=1, ie.,
(£ 5 Batin i (T R [ £ BTt i (mer:)|=1

.9
then, since R?, R, +++, Ry-lare linearly independent for j=1,2,-,n, from (4.4), we
obtain

(A+7) e=d, (4.5)
where €= (c(0,0,++,0), ¢(0,0, 1), ¢(m,—1, =1, mx—1))" and d=(1,0,-,
0)’. We know that the matrix (A+/) is a symmetric and nonsingular, so

ce=(A+/)"\d. 4.6)

This means that there exists Q such that jt has the same structural pattern as A+
J), namely, matrix Q also has the Property C.

Cotter et al. (1973) have shown that if Q can be written as (4. 3), then the resulting
design has orthogonal factorial structure. An incomplete block design is said to have
orthogonal factorial structure if the adjusted treatment sum of squares from the intra-
block model can be partitioned orthogonally into the main effect and interaction sums
of squares.

Now, we will show the solution to the equation (4.5). If the matrix A+ is simple
circulant and nonsingular the inverse is obtained as follows.

2]
v

Let wy, w,+--, w,_, be the distinct roots of z'=1, where Wo=1, w;= cos +

isinzzlfor Jj=1,2,---,v—~1, then the eigenvalues of the circulant matrix A-+J= {g,
ay, -+, ay.,} are

Oi=as+aw;+aw+- o+ a,_w; 1, J=0,1,-,v—1,
and the corresponding right eigenvectors are

X;= (L, Wi, w2, v, w7, 7=0,1, -, 0—1.

Let X= (xo, x1, -, x,_,), then, since the first row of X is 1’, where 1 is vxl column
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vector with all elements unity, the first column of the inverse matrix of X should be
(1/9)1 and the jth column of X' is
(1/9) (L, we™s, war™, -, whz) ' = (1/0) (1, B, B, - W57)’
for j=0,1,,v—1, where W, is the conjugate of wai.
Since X! (A-+J)X=diag (8o, by, ", 0o-1), (A+])-t=X diag (8o, 01, +++, 0o-1) ' XY,
and therefore the first row of (A+J)~! is
(©(0), c(1), -+ € (0 —1)) = (1/0) V' [diag (o, 01, s o) 17X,
that is

725
O

c(H="tF

U n=0

) .7:0: 1’ A v—1.
Tha extension to the nth order nested block circulant matrix is not difficult. Let
wo(i) =1, w, (D), Wm-1(d) be the distinct m: roots of zmi=1 for i=1,2,+-,#, and let
xi("): (11 wi(i)y wiz (1), b} wim'_l(i))’y

then it can b= shown that the eigenvalues of (A+]) in (4.2) are

0(isy ja, -+rs o) = (the first ow of (A+])) (fl@x“ (k))

= ST Tl i i) (TT 0 *), 4.7

Fx=0,1,+,ms—1 for k=1,2,, 1.

Let X:f_I1®X.-, where Xi= (xo(i), X:(),--- Xm1(i)), then

(A+] )-IZXEdlag (0 (0’ 0,005 0)7 6(07 0’ ) 1) s %%

O(mi—1,my—1, e, ma—1)) 11X 4.9
Therefore, the (ji,jz +*,jn)th element of the first row of (A+]) tis
- - - hid _1 . - - n _‘-

c(Ju e ooy u) :(};Iln’ll) [§ %---%‘9-1(11, igyernyin) (E‘w,: (k)>] 4.9

We understand that the matrix (A+J) is symmetric. Utilizing the fact that eigen values

of a symmetric matrix are real, so that the imaginary parts in (4.7) and (4.9) must

be identically zero, we have, therefore,

i -1 .. . d ..
C(i19,7.27"’;jn):<1;[r1i> IR N A (kl':I::OS(zzk]m/mk)>, (4.10)
where

i1 iz

0o versdo) = 5 Dees By iy 1) Qi[lcos (2ixjsm/ms) ) (4.11)
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5. Examples of CFAS-PBIB Designs in Factorial Experiments

A Generalized Cyclic set in factorial treatments is generated from an initial block
consisting of & treatments (John, 1973). The Jth block of the set is given by adding
the jth treatment combination to each treatment combination in the initial block, where
addition is defined as (i, iy, +=+, i) + ( J, jay oy Jn) = (ki koy =, ko), where i,4j,=k, mod
My (p=1,2,--,n). Under this definition a set will consist of V=111, 1, blocks.
However, some sets will have a fraction, 1/¢ say, of the v blocks replicated ¢ times. If
the treatment combinations in a block are arranged in order of magnitude and they are
then regarded as an nk digit number, the initial block will ke the bleck of lowest
numerical value,

Example 5.1 Consider the construction ofsets for v=12, my=4, m,=3, k=4. One
possible full set is generated frem the block (€0, 10, 21, 32). Thke 12 blocks are

(00, 10, 21, 32), (01, 11, 22, 30), (02, 12, 20, 31)
(10, 20, 31, 02), (11, 21, 32, 00), (12, 22, 30, 01)
(20, 30, 01, 12), (21, 31, 02, 10), (22, 32, 00, 11)
(30, 00, 11, 22), (31, 01, 12, 20), (32, 02, 10, 21).

It can be seen that suceessive blocks in any column are generated from the first block
of that column by cycling the first digit of the 2 tuple ¢, under reducticn w1, where
necessary. Similary for rows the second digit is used, med ms. This particular design
is also resolvable, in the sense that each treatment combination cccurs cnce in each row.
It is clear from this that if A=my;, for some f, a resolvable design of v blecks in k&
groups of v/k blocks can be constructed.

For Genenalized Cyclic designs, it can be seen that the structural matrix NNV is multi-
nested block circulant. Therefore, a Generalized Cyclic block design in a factorial expe-
riment has a CFAS or Property C, so it has orthogonal factorial structure. In the
example 5.1, NN'={M,, M,, M,, M}, where M,= {4,0,0}, M,=1{1,3,0}, M,={0,2, 2,
and M,= (1,0, 3}.

Some of the properties of Generalized Cyclic designs in factorial experiments have
been investigated by John (1973). Of primary interest was the problem of obtaining a
group of non-isomorphic sets, that is a group such that one set cannot be obtained from

another set in the group merely by relabelling the treatments. Some results on the
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construction of fractional sets also have been obtained. Furthermore, he considered the
efficiency of the factorial effects in the Generalized Cyclic designs, and in particular
it has been shown how to obtain designs that maximize the efficiency of the main

effects.
6. Property C and Property A in Block Designs

In an incomplete block experiment, Kurkjian and Zelen (1963) introduced a structural
property of the design related to the block incidence matrix N of the design. This stru-

ctural property was termed Property A: A block design is said to have Property A, if

NN':i{ v h(al,az,--~,5,)(ﬁl®Diﬂf)},‘ 6.1)

$=0 Loy tosTometon=s

where §;=0 or 1 for i=1,2,---,n, and A(dy,0,, -+, 6») are constants, and where D% is
L if 6:=0 and Juxm if 6:=1. Since D:°=R?, and D:!=R% + R. +---+Ry7', DS is a
circulant matrix, so the matrix NN’ in (6.1) is an nth order nested block circulant
matrix. Shah (1960) considered the following association scheme: The two treatment
combinations are the (py, P, -+, P»)th associates, where p;=1 if the ith factor occur at
the same level in both treatment combinations and p:=0 otherwise. It has been shown
that a Balanced Factorial Experiment is a PBIB design with respect to the above asso-
ciation scheme. Paik and Federer (1973) designated the association scheme as Binary
Number Association Scheme (BNAS). The Group Divisible designs, Rectangular designs,
Hierarchical Group Divisible designs, and the Direct Product designs are BNAS-PRIB
designs, but most Cyclic and Generalized Cyclic designs are not so. They are CFAS-PBIB
designs. Since every incomplete block design having Property A is a PBIB design with
BNAS, any PBIB design having BNAS is a special case of PBIB design with CFAS.
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Corrections to “Cyclic Factorial Association Scheme
Partially Balanced Incomplete Block Designs”

U.B. Paik*

The following corrections should be made:
On page 35, in the formulas (4.10) and (4.11), the expression ﬁlcos (2 1xj2m/m;) should

be replaced by

COS(%E 2ikjh7r/mk>.
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