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Optimal Screening Procedures for Improving

Outgoing Quality Based on Correlated Normal Variables
Moon Charn Riew* and Do Sun Bai**

ABSTRACT

Optimal screening procedures for improving outgoing product quality based on corre-
lated normal variables are presented. The performance variable and the screening
variables are assumed to be jointly normally distributed. These procedures do not
require specialized tables, and closed-form solutions are obtained for the case of one-
sided specification. Methods for finding optimal solutions for the case of two-sided
specifications are also considered.

1. Introduction

Consider two correlated random variables X and Y coming from a bivariate normal
distribution. Y is the performance variable representing the quality characteristic of a
product and X is a screening variable, Suppose that the probability that a measurement
on Y meets a certain specification is 7.

We wish to improve the outgoing product quality through a screening process using
X. Such a screening procedure would be appropriate if ¥ is based on a measurement
that is more difficult or cxpensive to make than X, For example, the measurement of
Y may require destructive or costly testing.

Attempts to improve the outgoing quality using screening variables have been made by
several researchers; Owcen, Mclntire and Seymour (1975) studied the screening method
for increasing the proportion of units within specifications from 7 to a specified higher

proportion § after screcning; Owen and Boddie (1976) and Owen and Su (1977)
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considered screening methods with some parameters unknown; Li and Owen (1979)
extended these results to the case of two-sided specifications; Owen, Li and Chou (1981)
and Madsen (1982) considered selection procedures which give a specified degree of
confidence that a guaranteed proportion of screened items is conforming. Much of the
work done in this area requires specialized tables to implement the screening procedures.
Odeh and Owen (1980) give a collection of tables for screening based on the bivariate
normal distribution. Some case examples are given in Neal (1981) for applying bivariate
normal distributions including the screening procedure.

Two types of misclassification errors are involved in these screening procedures; a
conforming item may be classified as nonconforming (type I error), or a nonconforming
item may be classified as conforming (type Il error). In fact, screening with screening
variables may be performed with less inspection cost but with less accuracy compared
with the screening with performance variables.

In this paper we present screening methods which minimize the expected cost; the cost
of screening inspection plus the costs due to misclassification errors. The screening
procedure using a single screening variable under one-sided specification limit is pre-
sented in Section 2. The case of two-sided specification limits is dealt with in Section 3.
Approximate solutions having closed forms are presented and a numerical example is
given for illustrative purpose and for comparison between approximate and exact

solutions. The case of two or more screening variables is considered in Section 4.

2. One-sided Specification Limit

Suppose there exists a lower specification limit L: that is, items with Y values at or
above L are conforming and those with Y values below L are nonconforming. Assume
that X and Y have a bivariate normal distribution with known means p. and y,, known
standard deviations ¢. and ¢, and known correlation coefficient p, —1<p<1 and p+0.
Let 7 be defined as

y=P[Y>L1=PL[Y>p,—Uy0,,
where U, is the 100y percent point of the standard normal distribution.

Assume that p is positive. Then an appropriate screening procedure is to accept any

item whose X value is at least p.—Ko., where K is the cutoff score to be determined.

Let a(K) be the probability that an item is accepted and (K ) be the joint probability
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that an item is conforming and it is accepted. Then they can be expressed as

and
B(K)=P[X>p.—Ko, and Y>L]=U (X, U,; o), 2
where
o (K) :Sfmgz’) (2)dz, 3)
(K, U,; p) =§:§1¢(zl, Z; p)dzdz, 4)

and ¢(2) and ¢(zy, 2,; p) represent, respectively, the standard normal probability density
function and the standardjzed bivariate normal probability density function with corre-
lation coefficient p.

Let the cost of accepling an item not meeting the specification, for convenience, be the
economic unit, 1, Let C, be the relative cost of scrapping (or reprocessing) an item and
C, be the relative cost of screening an item as compared with the economic unit, 1,

Then the expected cost per item with screening becomes

S(E)=a(K)~B(K)+C, {1~a(K)} +C. (5)
Theorem 1. f(X) has a minimum at K=K* where,
K*= (U, + U, v1—p%/p. (6)

Proof. Since
R 9K)=¢(K)

and
TV = =g 022K =%,

we have
B () =¢(K>[¢(%;‘f{) -] @
It is scen that (7) has zero at K=K* Since ¢(K)>0 for any K and & (z) is a nonde-
creasing function of z, K* is the minimum point of JFE). 1
Optimal screening procedures for situations where p is negative or when there is an
upper specification limit &7 on Y can be similarly derived. The results are shown in
Table 1,

Once the optimal screening procedure is found, we have to decide which strategy to
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Table 1. Optimal Screening Procedures

1 Lower Specification Limit (L) \ Upper Specification Limit (U)
~0 Accept an item if Accept an item if
e X>pu.—K*o. X<p+K*o.
< Accept an item if Accept an item if
p<0 X<pu.—K*o. X>p+K*o,

choose among the three (screening, acceptance without screening and scrapping without
screening) by comparing their associated costs. Note that the expected costs per item for
the cases of acceptance without screening and scrapping without screening are 1—7 and
C,, respectively.

Example 1. Let Y be the performance variable for some device which is expensive to
measure or when it is measured the device is destroyed. A measurement X that is corre-
lated with Y can be taken. Suppose that X and Y have a bivariate normal distribution
with p=0.8, p.=3, u,=2, and o.=0¢,=1. We assume that the specification on Y is
Y >0.80, so that in the unscreened population 88.49 percent of the items are confor-
ming. Suppose that Cs; and C, are 0.03 and 0.08, respectively. Then we have, from
(6),

K*=(1.20—1. 4053 v1—0. 8%) /0. 8=0. 4460.

Hence the optimal screening procedure is to accept all items for which X >2.5540. In
this case a=9(0. 4460) =0. 6723 and =7 (0.4460, 1.20; 0.80)=0.6619. Thus the pro-
portion of conforming items among the accepted ones is 8/a=0.9846. The expected cost
per item with screening is, from (5), 0.0666. The cost reduction is significant compared
with the cost for acceptance without screening which is 0.1151 or the cost for scrapping
without screening which is 0.08. As the value of p gets higher, the cost reduction
becomes more significant. For example, when p=0.95, the expected cost per item with

screening is 0. 0507.

3. Two-sided Specification Limits

In this section we consider the case where there exist both L and U, that is, all items
with Y values between L and U are conforming and those with Y values below L or
above U are nonconforming.

Let P[Y>L]=y, and P[Y<U]=7, Thus before screening, the proportion of confor-
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ming items is y;+7,—1. Then an appropriate screening procedure is to accept all
items for which
p—Kio.<X<p.+ Ky, (8)
where K, and K,, —K,;<K,, are to be determined so as to minimize the expected cost

per item with screening as given by

fK K)=a—8+C,(1—a) +C,, 9
where

a=a(K,, K;) =Plp.— Ki0.<X<p.+K,0.] 10)
and

B=8(K,, K3) =Plp.—Ki0.< X<y Koo and LLY<U 7. (11)

Note that the costs associated with acceptance without screening and scrapping without
screening are 2—y,—7, and C,, respectively.
(10) and (11) can, respectively, be rewritten as
a(K, K)=0(K))+90(K,)—1 (12
and
B(K,, Ky) =U (K, Ur,; 0) — ¥ (K,, — Uy, p)
—U(—K, Ur.; p)+¥(—K,, —Us,; 0). a3
Differentiation of (9) with respect to K, yields

o K K =4 (KD g (K, i=1,2, 1
where

Ky —of Ut K\ UpcipK

g&K)—cD( i )+¢( Tt ] ) c.. (15)

It can be easily seen that, for each 7=1,2, (15) has a minimum at K=K.° with a

common minimum value

where

K =(~1)(Ur,—Ur) /2p. un
Note that, from (17),

KP+ K2 =0, (18)
and, from (15)

&1(K)=g:(—K) 19

and
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gi(K)=g:QK"—-K), i=1,2 (20)
We know that if (16) is negative, the equation g:(K:) =0 has two distinct roots for each

i. Let K.* be the larger of the two. In the following a point (K, K,) satisfying K,+ K,
=0 will be referred to as a boundary point. When K,+K,=0, a=@8=0 from (10) and
(11). Thus the value of f(Kj, K,) at any boundary point is C,+C..
Theorem 2. (a)If g°>>0, f(K,, K,) is minimized at any boundary point. (b) If g° <0,
f(K,, K,) is minimized at either (K * K,*) or a boundary point.
Proof. Consider the following constrained optimization problem:

minimize f(X,, K,) @n

K1,Kz

subject to K,+K,>>0.
A necessary condition for (X, K;) to be optimal is that there exists 2>>0 such that

$(K)g(K)—2=0, i=1,2, (22)

K+ K;>0 (23)
and

(K, +K,)=0. (24)

See Bazaraa and Shetty [2], pp.137--139.

Note that either K,+X,=0 or 7=0. We immediately see that any boundary point
for which g;(K))>0, i=1,2, satisfies the necessary condition. Thus from now on we
consider the non-boundary point. Then from (22) and (24), (K, K,) must satisfy

&:(Ki) =0, i=1,2. . (25)

If g°>0, only a boundary point satisfies the necessary condition. For, the only root
of equation (25) is K:=K:°, i=1,2, but then K,+K,=0 from (18). Thus the optimal
solution is any boundary point.

If g°<0, (Ki*, K,*) is the only non-boundary point which satisfies the necessary
condition. For, there are three points other than (K;*, K,*) satisfying (25). From (19),
these are (K.*, —K\*), (—K* K,*) and (—K,*, —K,*). Since K’ <K* i=1,2,
— (K *+K,*) is negative. Thus (23) does not hold for (—K;*, —K,*). The other two
points are indeed boundary points. Thus in this case the optimal solution is either (K,*,
K,*) or a boundary point.|j

Note that a boundary point leads to scrapping of all items. Hence from Theorem 2,
the optimal screening procedure is as follows:

i) If g°<0 and f(K,, K;) <C,+C,; accept all items for which
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pe— Ko <X<p+ Ko
and scrap all other items.

ii) Otherwise; scrap all items.
Theorm 3. K*—K,*=2K,°. (26)
Proof. From (20), 2K.°—K;* is the other root of equation g:(K;)=0. We see from
(19) that —K;*and K,*—2K,° are the two roots of equation g;_:(K;-:;) =0. Since K;*>
2K°—K*, K;*—2K° is the larger of the two roots of equation g,_:(K,_.)=0. Hence
by definition Ki*—2K° =K% .1

From Theorem 3, it suffices to find either one of K* or K,*. A closed-form solution
for K* does not exist, but K;* can easily be obtained by using numerical methods,
such as regula falsi.

We now consider a method for finding approximate solutions. If [p] is relatively
large, the first term of (15) is negligible for p<0, and the second term of (15) is
negligible for p>>0. Thus we can approximate (15) by g:*(X) where, for i=1,2,

@(%@—)—C, for p>0,
g (K) :{ Uyt oK 27)
@(———W>—Cr for p <0.
By equating g (K:) =0, the approximate solution K;* becomes
Koo [WUn+Uavi=p)/p  for p>0,
' [— (Upsei+ Uc, v1—p%) /p for p<0. (28)
From (17) and (27) it is seen that
go(K)=g2:(K—2K°), i=1,2, (29)
from which it follows that
Kpe—Ke2=2K°", (30)
Consider the difference
g (K) —g(K) :1—¢((f}i—igj’ +Ue). 31

This implies that K;° <K;* <K.*. Note that (U,,+U,,) is positive. Thus when lp] is
relatively large, K.* is a good approximation to K;* as will be shown in the following
example. K can also be used as an initial value in obtaining K;*,
Example 2. There exist both L and U on ¥, 7,=0.97 and 7,=0.94. C,, C, and o are
the same as those given in Example 1. From (17),

Ky? = (Us.e1—Us.00) / (20) =0. 4075.
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Table 2. Comparison of Approximate and Exact Solutions

Approximate Solution

Exact Solution

o K- Ko Cost K* K, Cost

0.6 0.5034 1. 2366 0. 2580 0.3735 1. 1067 0. 2571
0.7 0.5142 1. 1427 0. 2377 0. 4755 1. 1040 0. 2376
0.8 0. 5462 1. 0961 0.2120 0.5411 1. 0910 0.2120
0.9 0. 6085 1. 0973 0.1781 0. 6084 1. 0973 0.1781

Using this value in (16) we see that g° is negative. Thus from (28),

K2= (Us.o1+Us.0s v1—0. 80%) /0. 80=1. 2972.

Using this as an initial value we have K *=1.2971 by regula falsi method. Thus we

obtain from (26) and (30)
2 =K*—2K,°=0. 8397

and

K*=K,*—2K,° =(. 8896.
Hence f(K*, K,*) =7(1.2971, 0.8896) =0. 0681,

which is significantly less than C;+C.,

=(.11. Therefore the optimal screening procedure is to accept only those items for

which

tx—1. 29710 < X< 4-0. 88960 -

For different values of p, approximate and exact solutions and their associated costs

are shown in Table 2, We can see that as p increases the difference in the two solu-

tions decreases. In this example, the cost of acceptance without screening and the cost

of scrapping without screening are 0.09 and 0.08, respectively. Note that when p=0. 6,

the expected cost per item with screening is, from Table 2, 0.0877, which is greater

than the cost of scrapping without screening. In this case the optimal strategy is there-

fore to scrap all items without screening.

4. The Case of Two or More Screening Variables

Suppose there exist p screening variables, X, X, -+, X, and assume that (Y, X, X,,

-+, X;) are jointly normally distributed with known means g, z;,*, pt5, and known

standard deviations o,, ¢, <+, 65, respectively. Assume also that the correlations are

known, and are p,: between Y and X;, and p:; between X: and Xj, 7,7=1,, p.

Owen, Mclntire and Seymour [9] considered two screening variables and showed
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that the procedure based on the linear combinations of the screening variables is more
efficient than the one dealing with the screening variables separately although the
latter is somewhat simpler to calculate. In this section we consider the procedure based
on the linear combination of the screening variables V=g, X, +a,X,+ - +a,X,.

Then the screening procedure is to accept only those items for which

V >u,— Ko, when there exists L,

and
V< p+ Ko, when there exists U,
where
P
Moo= Elai,ui
and

o= éﬁiaiajpijgioj‘i‘ élaizdiz.

Since the probabilities of misclassification errors, which have direct influence on the
screening cost, decrease as the correlation between the performance variable and the
screening variables increases if the other conditions are held constant, a,,a,,---,a, are
to be selected to maximize the correlation between Y and V and to minimize the vari-
ance of (Y— V). Therefore, we choose a; to be o,/0: times i-th element of p,/R%,
where p, is a px1 vector with i-th element equal to p,; and R is a pXp matrix with

(#,7)-th element equal to p:;. The correlation between Y and V is the multiple corre-
lation coefficient and its value p,, is (p,/R™!p,) % see Anderson (1958).

The problem in this manner is reduced to one with a single screening variable, 1
and the procedures of Sections 2 and 3 are directly applicable.
Example 3. There exists L (=0.8) on Y and pu, is 2. Two screening variables, X,
and X,, are available, with o,=0,=1, ¢:=2, £,,=0.70, p,,=—0.60 and p;,=—0. 20.
The costs of screening inspection for X, and X, are, respectively, 0.025 and 0. 015,

and C, is 0.08. The values of g, and g, are

Oy (10)71——[0)'2[012) =(. 7083

U= T (T—pd)

and

= 0 (P2 051012 _ _
a,= o, (1_1012;) =—(. 2292.

Since
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Table 3. Optimal Solutions and Associated Costs

strategy K* cost

without acceptance —_ 0. 2000
screening rejection — 0. 2500
use X; only 0.5142 0. 1617

screening use X, only —0.5034 0. 1664
use X, and X, 0. 5679 0.1568

2 2 172
po=| L2 2”1"_’_’;" 1t 2is 170, ggog,

we have
K *=(1.20+1. 4053 +'1—0. 8898%) /0. 8398=0. 6278.

Thus if g;=1 and u,=2, the optimal screening procedure is to accept only those items

for which

0. 7083X;—0. 2292X,>— 0. 2787.
The corresponding expected cost per item with screening is 0. 0579, The optimal solu-
tions and their associated costs for all possible combinations of strategies are shown in
Table 3.

In the above example, as one might expect, the screening procedure using X; and X,
is the most economical. In general, however, as the number of screening variables
increases, reduction in costs due to the increase in the correlation between Y and V
may not offset the increase in the cost of screening inspection. Thus when several
screening variables are available, the problem as to how to select the best subset of
screening variables may arise. In this case it would be possible to apply the variables

selection principles of multiple regression or to utilize the branch and bound techniques.

5. Concluding Remarks

We have given optimal screening procedures for one-sided and two-sided specifications
based on correlated variables assuming a multivariate normal structure among the
variables.

These procedures do not need specialized tables, and in cases of one-sided specifi-
cation the optimal cutoff scores have closed-form solutions. Approximate solutions
having closed forms are presented for the case of two-sided specifications, and these

approximate solutions are close to exact ones when the correlation between the per-
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formance variable and the screening variable is relatively high.

Methods presented in this paper are developed under the assumption that all para-

meters are known. The theory for cases where some parameters are not known is cur-

rently under development.
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