기포제가 모르터의 제성질에 미치는 영향에 관한 실험적 연구

Experimental Studies on Influence of Foaming Agents on the Properties of Mortar

  • 성찬용 (충남대학교 농과대학) ;
  • 황은 (강원대학교 농과대학)
  • 발행 : 1985.03.01

초록

This study was performed to obtain the basic data which can be applied to the use of foaming mortars. The data was based on the properties of foaming mortars depending upon various mixing ratios and addings to compare those of cement mortar. The foaming agents which was used at this experiment were pre-foamed type and mix-foaming type which is being used as mortar structures. The foaming mortar, mixing ratios of cement to fine aggregate were 1:1, 1: 2, 1 : 3 and 1 : 4. The addings of foaming agents were 0.0%, 0.5%, 1.0%, 1.5%, 2.0%, 2.5% and 3.0% of cement weight. The results obtained were summarized as follows; 1. At the mixing ratio of 1 : 1, the lowest water-cement ratios were showed by foaming mortars, respectively. But it gradually was increased in poorer mixing ratio and decreased in more addition of foaming agent. The water-cement ratios were decreased up to 1. 8~22. 0% by G, 2. 2~24. 1 % by U and 0. 7~53. 1% by J foaming mortar than cement mortar. 2, At the mixing ratio of 1 : 1, the highest bulk densities were showed by foaming mortars, respectively. But, it gradually was decreased in poorer mixing ratio and more addition of foaming agent. The bulk densities were decreased up to 1. 4~20. 7% by G, 2. 3~23. 7% by U and 26. 5~56. 5% by J foaming mortar than cement mortar. Therefore, foaming mortar could be utilized to the constructions which need low strengths. 3. At the mixing ratio of 1:1, the lowest absorption rates were showed by foaming mortars, respectively. But, it gradually was increased in poorer mixing ratio and more addition of foaming agent. Specially, according to the absorption rate when immersed in 72 hours, the absorption rates were showed up to 1. 01~1. 24 times by G, 1. 03~1. 58 times by U and 1. 10~5. 91 times by J foaming mortar than cement mortar. It was significantly higher at the early stage of immersed time than cement mortar. 4. At the mixing ratio of 1:1, the lowest air contents were showed by foaming mortars, respectively. But, it gradually was increased in poorer mixing ratio and more addition of foaming agent. Air contents were contented up to 4. 0~17. 2 times by G, 5. 2~23. 2 times by U and 23. 8~74. 5 times by J foaming mortar than cement mortar. 5. At the mixing ratio of 1 : 1, the lowest decreasing rates of strengths were showed by foaming mortars, respectively. But, it gradually was increased in poorer mixing ratio and more addition of foaming agent. Specially, the strengths of 28 days were decreased 0. 4~2. 2% than those of 7 days by foaming mortar, respectively. Also, the correlations between compressive and tensile strength, compressive and ending strength, tensile and bending strength were highly significant as a straight line shaped, respectively. 6. The correlations between absorption rate, air content, compressive strength and bulk density, absorption rate, compressive strength and air content were highly significant, respectively. The multiple regression equations of water-cement ratio, bulk density, absorption ate, air content, compressive strength, tensile strength and bending strength were computed depending on a function of mixing ratio and addition of foaming agent. It was highly significant, respectively. 7. At the mixing ratio of 1 : 1, the highest strengths were showed by cement mortar and foaming mortars, by chemical reagents. But, it gradually was decreased in poorer mixing ratio. The decreasing rates of strengths were in order of H $_2$S0 $_4$, HNO$_3$ and HCI, J,U,G foaming mortar and cement mortar. Specially, at the each mixing ratio, each chemical reagent and 3.0% of foaming agent, J foaming mortar was collapsed obviously. Therefore, for the structures requiring acid resistence, adding of foaming agent should be lower than 3.0%.

키워드