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The Capacitated Solid Transportion Problem
(Planar Constraints) with Upper and Lower
Bounds on Rim Conditions
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Abstract
In the present paper, the capacitated solid transportation problem (planar constraints) is con-
sidered with upper and lower bounds on the rim conditions. The considered model has been
shown to be equivalent to a standard capacitated 3-index transportation problem. A procedure
to solve any capacitated 3-index transportion problem is also suggested. Some special cases of
the considered model have been shown to conform to possible practical situations.

1. Introduction

The solid transportation problem considered by Haley [5, 6] is the problem of minimizing the
total transportation cost involved in shipping various commodities from a number of warehouses
to number of markets. He has termed his constraints as ‘planar sums’ or ‘planar constraints’.

An important limitation of the ‘planar constraints’ is that the availability of each commodity
at each warehouse, the demand of each commodity at the markets and the total supply from
a particular warehouse to a market are fixed quantities. Furthermore no restriction is imposed
on the allocation of various commodities from a warehouse to a market.

It is quite natural with such rigidity in availabilites, demands and the total supply and un-
restricted allocation, the problem goes away from reality and finds very little application.

A hypothetical situation, in which a manufacturer who just starts the production of hetro-
geneous products in his newly established production units to distribute in the city markets, is
not sure about the maximum output, as the production units are at their infancy. At the same
time he is ignorant about the maximum or the minimum demand of a particular commodity at
a specified market. The presently considered model highlights the above situations and also
many other complex varieties.

The classical transportation problem with upper and lower bounds on the rim conditions have
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been studied by Charnes, Glover and Klingman [2, 3, 4]. In this paper, the capacitated solid
transportation problem with upper and lower bounds on the rim conditions (i.e. availability of
each product at the warehouses, the demand of each product at the markets and the total
supply from each warehouse to a market), is considered. These rim conditions are the ‘planar
sums’ as defined by Haley [5].

The problem is transformed into a capacitated solid transportation problem with equality type
of constraints and some of decision variables bounded above by the difference of maximum
and minimum availabilities of a product at a warehouse, demands at the markets and the sup-
plies from a warehouse to a market.

This transformation is brought about by the introduction of a dummy warehouse, a dummy
commodity and a dummy market.

The equivalence between the original and the transformed problem is estblished by a theo-
rem. A solution methed is suggested for any problem of the form of the transformed problem,
so that a solution of the transformed problem thus obtained would give the optimal solution of
the original problem.

Three special applications are discussed at the end.

2. Theoretical Development

The capacitated solid transportation problem (planar constraints) with lower and upper bounds

on the rim conditions is defined as:

(P-1): Minimize Z = 2’ 37 3 Cijx Xijk
T T %

s. t.
Qjk §¥Xijk = Ap, JE€J REK
bix éin,-k < Bu, telLke Kk
J
ei,-§Z'x,-jk§E,-j,iE[,j€]
K
and O=Sxip Sup, t€LIE, REK
where
I= 11, 2 ..., m}, the set of warehouses
J= {1, 2 ..., n}, the set of markets
K= {1 2, ..., pl, the set of commodities

xijk = amount of k'* commodity shipped from warehouse 7 to market J.
cijk = cost per unit of the k** commodity shipped from warehouse 7 to market ;.

aj = minimum demand of the %™ product at the j* market.

Ajx = maximum demand of the £* product at the j** market.

bix = minimum availability of the k'* product at the #** warehouse.
Bi* = maximum availability of the £** product at the #** warehouse.
ei; = minimum supply from the 7** warehouse to the j** market.
E:;; = maximum supply from tHe 7" warehouse to the 7** market.



For feasibility, it is assumed that

Ak Zap 20, jELFEEK
Bt 2 b =2 0, i€ kEK
Ej 2e; 20, 1€]57€]
2 e; £ XBxi€]

J K

;’ eij §§Aﬂ=,1’€]

ZI-’ bik g;Aﬂ:,kEK
ZZbik EZZAJ‘I:

I K J K

2 X ej =X X Bu

I 'K

The above problem is equivalent to the following standard three-index capacitated transporta-
tion problem, termed as related problem (RP).
(RP) : Minimize X, Z, %' Cijk Xijk
I’ I ’
s. t.
2D xig = A ,jE ] REK
I

3 xik = B ,1€[ PEK
‘/I

> xigx=E; 1€lj€]
K
3 xijev1 = Ajpn = ;Eij
I
3 Xiatl k = As+1 k =§'Bik
T
3 Xi a4l p+1 = As+l p+1 = R
Il
2 Xij pHl = B, pn1 =2 Eij
J’ J
3 xm+1 ik = Bmi1 & = X Au
J J
3 Xm+1 jp+1l = Bm+1 p+1 = K
7
3 xm+l jk =Eat1 ; =3 A
K' K
3] Zin+l & = Eint1 = X Bu
Iz K

Xm+1 a4+l k = Fm+1 n+1 = R,
K!

where R is an arbitrary large number.

xijk S uik , 1€ELJE] REK

Xmt1 jk = Ajr —ap, jE ], REK
Xin+l ¥ = B —bix, 1€E[ REK
Xijp+1 = Eij —eij, 1€ jE]

Xia+l p+1 = min (Ein+1, Bip+1), 1€ [

SO O O
IATA A A TA



O = Xmt1 jp+1 = min (Ajp+1, En+i N)IE]T

0 = Zm+1 a+1 & = min (As+1 %, But1 4), kE K

0 = Xntl o+l p+1 = R

Ciip+lt = 0,1€[ €] Cintl p+1 =0, 1€ [
Cintl k = (0, 1€ FEK Cm+l jpr1 =0, JE ]
cmtl ¢ = 0, J€EJ EREK Cm+l n+1 k =0, RE K

Cm+1 n+1 p+1 =0,

Theorem 1. The solution {xik =x 4l i€ 1 jE ] kE K is feasible (optimal) for problem (P-1),
if and only if, the solution linl, i€, jEJ, kE K
where

xi}k =l , i€ JEJ EEK

Xin+l & =Bk —?x?}k, €] ke K

Ert b = Aj =3 xik , JE] REK

xijp+1 = Ejij —%'x:;k, el je]
Xin+l pt+1 = DA x;kjk, el
Xm+1 j p+1 :ZZijk,kEK, JE]
Xm+1 ntl & = ;6‘:’ xik, kEEK
Xm+1 n+l p+1 = R — ; ; 37 xik, is feasible (optimal) for (RP).
K
Proof. Let {xi :?Ci’;k }, i€ jE€] k€ K be a feasible solution of P-1).

For je ] kEK
> xig = ;Xijk + Am+1 jk
T

= )13 xin + (Ap — .>]3 x5t)  (by def)

= Au
Hence ; xik = Ajp, JEJ REK

Similarly, it can be shown that
%xwk = Bux,i€l ktex o (1)

%Xijk =Ey, 1€l ]
Consider j& J Then
2 Xijp+1= 2 Xijpr1t Xmt1 j pi1
1 I
=2(Ei—X afx) + 2 X xi (by def)
1 K I K
=3 Eij=Ajm
1

Therefore 3 xijpr1i=Ajpr1, jEJ
T



Similarly it follows that
D xint1 k=2 Bik=Aw1, kEK
i T

%xznﬂ pr1 =R =An+1p+1
%’ Xiij:%'Eij =Bi pt1

%’ Xm+1 ij%’A,’k:Bmﬂ E 2)
? Xm+1j p+1 = R =Bm+1 pt1
%' Xi nt1 kI)K: Bir=FE; 111

2 Xmt+l ntl k= B =FEm+1 nt1
K!

2 Xntlph=FE Ajk=En+1
I3 K

Now i{x%| (€1 j&€J k€ K being a solution of (P—1),

xp=swg, i€ Lje kex (3)
Now for jEJ k€ K
Xm+l jk = A —2 xk by def.
1

ajk = Zl'x?jk = A, by the feasibility conditions of (P—1)

— Xm+1 k>0
and xXm+: jk < Ajk—ajk.
Hence O s xmu1 o< Ajr, JEJ EEK
Similarly
Osxinv1r< B, i€ k€ex L L. (4)
0= xijp+1 SEij— ey, i€EL jE]
Now .Xm+1n+1k:; %’xfjk <2 Bu=Anwit, kEK

= Xmtla+l b S Ant1 4, REK
Also Xmirani k=2 2 xtin =232 3 xts s SAjs=Bm s, kEK
T J T 1 J

Hence xm+1 n+1 % < min(Ant1k, Bm+1k, Bmt1 k), £ € K

Similarly xm+1 j pr1 < mim(A ; p+1, Eianr), :€1 U (5)
Xm+1j p+1 < min(A ;p+1, Em+1), ;€]

Again %’ Xm+1n+l k =Bm+1 n+1 = R

—> Xm+latlprt =R (6)

(1), @), (3), 4), (5), (6) together prove that
{xist, i€, j€ ], RE K' as defined in the theorem is a feasible solution of (RP).



The converse of the theorem is obvious.

It can be easily noted that the objective function of the problems (P—1) and RP at their
respective coresponding solutions are same.
Hence, if one of the solutions is optimal, the other is also optimal.

3. Solution Procedure for Capacitated 3-index Problem
with Planar Constraints

(m x n x p) Capactated 3-index problem with planar constaints is:

(P):  Minimize X 3 X cijk Xijk

1 J K

s. t.
; xijk = A, 1€EJ, REK

> xig=Bir, i€L kEK
J
2 xin=Ei, (€L5E]
K

0 = xijk <uijk

where
yerey L

7 {1, 2
J =11 2.. ni
K=1{12.. pl
The procedure suggested below is to formulate an equivalent uncacitated (m X n X p X 2)
4-index problem, whose optimal solution yields an optimal solution of the above problem.
Now xipp S ik, 1€ 1L jE€J, kEK
— Xk + ik = wik, vie 20, i€l j€ ], kEK
This suggests that for each commodity %, the cell (7 j, &) can be further subdivided into two
cells (2, 7, £ 1) and (7, 7, k& 2), with allocations x:jx1 and xijk2, S.t. Xijk1 =Xk,
xijkz = yijk, where
IZ: Xijki = Uijk.
Define cik1= cijk and cinz =0, 1€ [ jE€ ], kE K.
Consider the following (m X n X p X 2) 4-index transportation problem :

(Q): Minimize 3 X 3 3 cijkl Xijki
I J K L

s.t.
2D xim=Amm, jE], kEK €L

ximi = Bin, i€ kEK €L

>
7
K}__,'xijkz =Ey, i€l jEJIEL



{_,'xz'jkt:Fijk, ielje] ke kK

xim 20, 1€L JE] REK EL
where L=11, 2}
and A1 = Ai
Ajk2 ZIZ' uijk— A jk

Bit1 = B
Birz =2 uijr —Eij
7

Fijk= uijk, 1€1, jEJ, kREK
The above problem () is a balanced uncapacited 4-index problem, the solution method of
which is given in [1].

Theorem II.A feasible solution of (P) provides a feasible solution of (&) and conversely.

Proof. If { x:;jx}, 1€ jE€ ], k€ K is a feasible solution of (P), then
since xijk < #ijk, SO setting
Xijkl =X ik Xijk2 = wik — Xijk, it is quite obvious that | xim}, i€ [ jEJEEK [EL is a
feasible solution of (&).
Conversely, let | xim }, i€ L jEJ k€ K, [ € L be a feasible solution of (Q).
Consider a solution{ xix |, i€ L jEJ k€ K

where Xijk= Xijk1.
Since xijk1 =20, therefore xijx = 0
2 o xip =2 xigk1 =Am = A, JE], REK
1 I

JZ' Xijk =JZ' xijpl = Bivt =Bu, i€1L kEK

KZ' xig =2 xipt = Eijn =Ey, i€LjE]
K

and LZ' xijk =Fijk1 = uip, 1€ 1 jEJ, REK

— Xik1 < Uijk
- xip< uik, t1€LJEJ EEK

Hence { xin }, 1€ L jE€ ] EE K is a feasible solution of (P).

Remark. Since cijt1 = cije and cijx2 =0, 1€ I jE€ J k€ K the values of the objective func-
tion corresponding to the fasible solutlons of (P) and (@) are equal. It is easy to
check that an optimal soltion of (@) provides an optimal solution of (P) and cover-
sely. Hence when (Q) is solved by the method given in {1], that solution will yield
an optimal solution of (P), by the methed given in Theorem II.

The related problem (RP) being a (m+1) X (%+1) X (p+1)3-index capactated problem can
be solved by the above procedure. The optimal solution thus obtained would yield an optimal
solution of (P—1), as proved in Theorem 1.



4. Some Special Cases of the Present Model

1. Minimize 2 2 2 cijk Xijk
T 7 K
s 1.
xijk = ajk, jE€ ] REK

xijk = b, 1€E[ EEK

xijpg = ey, 1€l jE€]

o =M <M =M

= xipp = uigk, 1€ L jEJ REK
assume cijp = 0, 1€ L JE ] EEK

and for feasiblity

2 e = 2 aj

I K

2 oeij = X bk

J K

DT e = max (2 X aj, 22 bix)
T 7 T K T &

Taking Au = 213 eij, J€EJ, kREK
Bik:§€ij,iE[, re K
Eij =e; , 1€L €]

the above problem is of the same form as (P—1) and hence can be solved by related problem.

This model refers to the wartime distribution of various commodities to various military camps,
where the maximum demand of the £ commodity at the j' camp is not known and also the
maximum availability of the 2% commodity at the j* camp is not known and also the maxi-
mum availability of the 4 commodity at the 7 production unit is unknown, for emergency
units have been built up, whose production capacity is uncertain, but the total supply from gt
production unit to 7** military camp is specified and has to be maintained exactly.

2. Minimize ; 2 2 Cijk Xijk

J K

s. t. xik 2 ajk, JE], REK

<M ~DM

xijk = b, 1€EL REK

xik = eij, i€ELJE]

=M

0= xiig = uipp, 1€E1L]EJ REK
bir = %} eij, 1€ 1

bik = ; air, REK

~M =~ =M

eij Z z; ajk, JE€J
This is also a special case of (P-1) and can be solved extending to the form of (RP).



This model refers to the case of a manufacturer, who has just started his business and is
therefore uncertain of the maximum demand of the various commodities at the markets. He
also has sound production units, so that production of the k' commodity at the 7* unit is ex-
actly known can exactly specify total supply of all the commodities from any production unit
to a market.

3. Minimize 2 2 2. cijk Xijk
I J K
s t. 2 xik = ap, JE ), REK

i
2 xip = bu, 1€L REK

[

2 xip = e, 1€Lj€E]
K
0= xip = uin, 1€ je] kEK

The above problem becomes a special case of (P-1), if we assume
A = max (aj, ; bik, ? eij)

Bir

max (b, 20 ajr, 2. @ij)
J J

Eij

max (eij, 2 ajk, 2 bir).
K K

This case is applicable to the situations, where the manufacturer wants to save the goodwill
loss by meeting the minimum demand, supplying at the minimum level, maintaining the mini-
mum level of production.
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