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Abstract

An obvious criticism of ESACF approach for model identification by Tsay and Tiao(1984)
is that the user may be confused by the elements which are in triangular but marginally larger
two standard deviation values. To avoid this drawback, the joint limiting distribution of the vec-
tor whose elements are in triangular of ESACF arrays is verified and the statistics to test the
nullity of the vector are suggested. We illustrate this approach with three examples.

‘1. Introduction

Suppose # observations are available from the ARMA(p, q) process
P (BZi = IB)a:

where @®(B)=UB)¢B)=1— " B— .. —@,B*
UB) =1—-Ui(B)—..— UasB?*
$(B)=1—¢1(BYy — ... — $p-a B¢
8B)=1—6i(B)— .. — 8,B°

. R R . . 2
{ @t } ; Gaussian white noise process with mean zero and variance o

We shall require that all the zeros of U(B) are on, those of #(B) are outside, and those of
8(B) are on or outside the unit circle, and also that @(B) and #(B) have no common factors.
Further, we shall assume that Z: starts at a finite time point ¢o if it is nonstationary.

For tentative model identification of univariate time series, several approaches have been pro-
posed for practical uses. They can be categorized as the post-estimation method and the pre-
estimation method. The post-estimation method such as the information criterion (AIC) by Ak-
aike (1974), criterion autoregressive transfer function (CAT) by Parzen(1982), data dependent sys-
tem (DDS) by Pandit and Wu (1983), select the model after estimation procedure.
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But the pre-estimation method such as sample autocorrelation functon (SACF) and sample
partial autocorrelation function (SPACF) approach by Box and Jenkins (1970), the R-and S-array
by Gray, et al.(1978), the Pade table approach by Beguin, et al.(1980), and Tucker (1982), sug-
gest the model before estimating the parameters.

Tsay and Tiao(1984) have developed the extended sample autocorrelation function (ESACF)
approach which can be categorized as mixed method of post-estimation method and pre-esti-
mation method. Based on the consistent AR estimates produced by iterated regressions, the
ESACF 1is defined and the model~is selected by its “triangular cutting off behavior.” The ESA-
CF approach is very powerful bacause it can handle nonstationary as well as stationary models
in a much more direct manner. But the obvious criticism of ESACF approach is the user may
be confused by the elements which are in triangular but marginally larger than two standard
deviation value.

The main purpose of this paper is to develop the statistics which represent “composite Tri-
angular zero behavior” and a procedure for identifing the model automatically.

Section 2 investigates the variance and covariance of the ESACF’s and developes the limiting
distribution of the vector whose elements are within triangular zero boundary of ESACF arrays
and the statistics to test the nullity of the vector. Using the statistics in Section 2, the model
identification procedure is given in Section 3 with three examples. A summary and discussions

are given in Section 4.

2. Variance and Covariance of ESACF Array

We first define the autocorrelation »w(l) as
rw(l) = (W) (2)
Then the asymptotic variance of the 7j&)’s can be approximately obtained by using Bartelett
formula. On the assumption that all the autocorrelations 7«([) are approximately zero for [ > j,

Barlett’s approximation gives
J-1
Var[#iw] =[1+ 2 )_31 UHre(D) 121/ (N~ ) (3)

For ARMA (p, q) time series, the equation (3) holds when j—q > k—p=0. If r4»'s are in-
dependent, under the null hypothesis :
Ho = {Pin =0, j—qg>k—p=0 |
the value
p+K ¢+K+1 . 2
{rim | @)

QIr(p, 9)= X Z Var [7iw]

k=p Jj=q—pt+k+1
K
where T = 2 &k
k=1

converges in distribution to a Chi-square with degree of freedom 7. The set {QIr > C. |,
where C, is the e-percentage point in X*(7), is an asymtotic ..itical region at level a for test-
ing H,.

In general, for any nonnegative integer «# and v, we define the QIr(», v) value as (4). Sup-



pose that the ARMA process Z: in (1) is nonstationary, that is, U(B)=1. In this case, the
values QIt(u, v), #< d, are not converge in distribution to a Chi-square, because asymtotically
rotmw) =0, m > 1, due to remaining nonstationary part of the AR process.

Using the above result, we can eliminate the possible AR order #, #< d, by checking QIr(x,
v) values.

The covariances of 7jk cannot be solved easily because they are covariance of autocorrela-
tions of different series. But we can approximate the covariances of 7jk’s which are in trian-
gular whose vertex is 7q+1( by following theorems and corollaries.

Theorem 1. For ARMA (p, ¢) time series, let { Wi}, { X: | and | Y: } be defined respect-
ively by

W= 09(B) Zi= 3 bunain
X.= H(B) W. (G>iz0)
Y. =HPB) W (1>kz0)

where the a: are independent (0, 62) random variable with E{ ait = 7ot
Then for fixed 2 and g, i+ h 2 k+g,

k—jl
lm (n-kg) Cov { vx(h), yv(9 | = v > Sxx(®) Sxv(t+ j0) (5)
t==q=j

where Sxy (£) = HF)HP (B)yw(?),

h=q+j
g=qt1
jit=li—1

Proof) See Appendix 1.

Corollary 1. Let the assumptions of Theorem 1 hold and E {ad} =76% Then,
Cov {rx(h), rv(g) |

= {(n-k-g) vx(©0) w(0) } * t:k_Z:_ll Sxy(t) Sxy (t+71) + 0(n7?) (6)

where Sxv(2) = H(F) H¥(B) yw(t)

Proof) The estimated autocorrelations are bounded and are differentiable functions of the est-
imated autocovariances on a closed set containing the true parameter vector as an interior point.
Furthermore, the derivations bre bounded on that set. Hence, the conditions of Thoerem 5.4.3
(Fuller, 1976) are met with | %(k), %(g), %(0), #(0) } playing the role of {Xa |.

Since the function rx(%) and ryv(g) are bounded, we take a= 1. Expanding E {rx(h) — px(h)]
[rv(h) — pr(g)] through third order terms and using Theorem 5.4.1 (Fuller, 1976) to establish
that the expected value of the third order moment is 0(»n2), we have

Cov {rx(h), rv(9) } = [yx(0)7v(0)]™! [Cov {7x(h), ¥v(g) }
— px(h) Cov (%(0), 7v(g) + — pr(g) Cov (¥x(h), 7v(0) |
+ ex(h) pr(g) Cov #x(0), 7v(0) | 1+ 0(n7%).



Using Theorem 1, we have the result, because px(%) and pr(g) are zero.
we now turn to the large sample properties of the estimated autocovariances and autocorrel-
ations.

Theorem 2. For ARMA (p, ¢) time series, let {W: | and X7 pe defined respectively by

M
VVt = ¢(pq)(B) i = ;0 0mdt—m

X0 = g2(B) Wi G>iz0)

where the a: are independent (0, 62) random variables with fourth moment 76* and sixth mo-
ment &

And we let @1, a2, ..., ar be the elements of finite subset { Ye+jn, 1 >720 |.

Then the limiting distribution of #'72(e1, a2, ..., ar) is multivariate normal with mean zero
and covariance matrix V where the elements of V are defined by Theorem 1.

Proof) See Appendix 2.

Corollary 2. Let the assumptions of Corolly 1 hold, and i, B2, ..., Br be the elements of fi-
nite subset | resiprn, 7> 1201},
Then the limiting distributing of #“2(8 1, £, ... , Pr) is multivariate normal with mean zero

and covariance matrix G where the elements of G can be derived by Corollary 1.

Proof) Since the re+j+n are continuous differentiable functions of the %e+j+1), the result fol-
lows immediately from Theorem 5.1.4 (Fuller, 1976), Corrollary 1 and Theorem 2.

Using the above result, under the null hypothesis:

Ho = | porjorn =0,7>4=01
the quadratic form
QDr(p, ¢) = w(Br, Be, ., Bty G (B, B, ..., Br) )

converges in distribution to X2(7). The set { QDr > C. |, where C. is the a-percentage
point in X2(7) is an asymtotic critical region at level « for testing Ho.

3. Model Identification Procedure

To indentify the ARMA (p, ¢) model tentatively, the ESACF table and indicator symbol are
examined to check the “triangular cutting off behavior”. The obvious criticism of the ESACF
table and its indicator symbol is that the user may be confused by the elements which are in
triangular but marginally larger than two standard deviation values.

To avoid this drawback, the @& and QDr values defined in Section 2 can be used to check
the “composite triangular zero behavior” for the model indentification. That is, we search the
North-West coordinate (7, 7) whose QI (i j) and @D7(i, j) values are less than C., where Ca
is the a-percentage of X2(7T), and tentatlvely identify (7 7) as an order of the model.

We illustrate this approach at 7=6 and « = 0.05 with three examples which were also de-

monstrated by Tsay and Tiao (1984). The elements of ESACF array used to calculate Qe(i, )
value are shown in Table 1.



Table 1

The elements of ESACF array for calculating Qls(s, 7) and @Ds(s, 7)

MA
AR 0 1 7 j+1 72
0 71(0) Y2(0) Yi+1(0) Yi+2(0) ¥i+3(0)
1 Y1(1) r2(1) ¥i+1(1) ¥i+2(1) Yi+3(1)
) 71 ¥20) ¥i+10) vi+e i ¥i+3()
Z+1 716G+ Y2(i+1) Yi+1G+1) Yi+2(i+1) Yi+3G+1)
l+2 Y1(i+2) 72(i+2) Yi+14i+1) Yi+2(i+2) Yji+3(i+2)
Example 1. For the series C in Box and Jenkins(1970), Tsay and Tiao (1984) suggested an
AR(2) model by the “triangular cutting off” behavior of the indicator symbols.
Table II gives the @k and @Ds arrays and justifies AR(2) model because QF{2, 0) and
QDs(2, 0) are less than theoretical X%(6, 0.05) value.
Table 1I
The QI and QDs Arrays of Series C
MA
AR 0 1 3 4 5 6
a. The Qs array
0 391.2 169. 8 74.5 55.4 40.7 33.5
1 214.3 83.4 29.2 21.6 15.6 14.8
2 4.5% 9.4* 1.1* 1.3* 1.8* 7.2*
3 79.7 6.8* 2.8* .3 . 4* 3.6*
4 50.2 27.7 3.2* .5* . 4* 2.6"
5 94.3 21.5 2.1* .8 . 6" 2.0*
6 31.2 27.9 14.2 . 4* .5* 1.7*
b. The @Ds array
0 — — 8703.6 3408.5 2140. 3 2006. 5
1 1121. 2 — 5072.5 3888. 8 2451. 1 2038. 2
2 5.9* 469. 0 212.8 91.0 39.9 286. 4




— 74.5 600. 4 — 426.3 432. 2 2.3"

3

4 — 93.7 - - - 0" 79.7
5 — — 230.1 134.2 — — 37.5
6 3057.7 443.5 1006. 6 — — 461.5 105.9

( * :less than 226, 0. 05) value
— : greater than 9999.9)

Example 2. Tsay and Tiao (1984) generated one hundred observations from the ARMA (4, 1)
model and analyze the ESACF table. The @ and @Ds arrays are shown in Table NI and
we can determine ARMA (4, 1) model as suggested by them.

For this example, it is of interest to examine the Qls(s, 7) values when ¢ is less than the
order of the nonstationary part of the AR process. For the values Q(z 7), 7 < 4, are all great-
er than ¥2(0.05, 6), we can eliminate nonstationary factor of the AR process.

Example 3. for the series A in Box and Jenkins (1970), ARMA(1, 1) model was suggested by
Tiao and Tsay (1984).

The @ and @Ds arrays given in Table IV also confirmed ARMA(, 1) model. In this
case, we can see this procedure is not confused by the ESACF elements whose values are
marginally larger than the two standard deviation values.

Table III

The Qb and @QDs Arrays of Example 2

MA
AR 1 0 2 3 4 5 6

a. The Qs Array
0 173.6 125.4 77.8 35.8 37.2 53.0 4.4
1 92.0 88.8 86.9 45.2 27.2 45.7 48.9
2 93.2 57.5 61.7 45.3 25.6 30.7 33.6
3 84.3 31.0 18.1 15.9 15.9 16.8 13.7
4 24.5 LT .3 .6* 1.4* 3.4” 3.9*
5 18.0 11. 3* .3 .3 .5* .9* . 8*
6 311 6.4* 7.0* .2* .b* .6* A4

b. The @Ds Array
0 — 4013. 2 1076. 2 1986. 1 1490. 2 631. 1 803.7

— 1520.5 3064. 4 1341. 7 290. 7 1186.3 1200.7

2 — — 3.6% 1524. 9 2883.0 621. 8 J1*




3 1571.6 4605. 7 1557.9 203. 4 524.1 432. 4 465. 2
4 1534. 5 .4* — 28.1 5700. 3 45. 8 177.8
5 421. 8 122.5 — — 4.6* 115.1 2.5"
6 — 572.6 — — — — 5065. 1
(= :less than ¥2(6, 0.05) value
— ! greater than 9999.9)
Table IV
The QF and @Ds arrays of series A
MA
AR 0 1 2 3 4 5 6
a. The QI array
0 109.0 54.5 33.4 26. 8 33.9 28.1 21. 4
1 45.9 1.1* 1.5* 1.1* 13.4 9.2* 5.9*
2 32.1 15.3 LT LT 12.6 9.5* 7.1*
3 54.7 2.5* 4.2" .5* 9.3* 7.9* 6.9*
4 83.9 4.3* 11.4 3.4* 5.9* 6. 1* 4.7*
5 70. 4 58.9 23.7 11.6* 12.6 3.9* 3.2
6 51.9 34.4 53.2 20.5 19.5 11. 07 2.7
b. The @Ds array
0 1409. 8 9555. 7 4725.7 1910.9 1514. 8 2739.9 1016. 3
1 8529. 2 6. 8* 55" 113.1 1880. 1 138.0 262. 6
2 4876.6 6463. 6 6773.0 — 6.4* — . 4*
3 — 36.0 399.3 25.4 25.2 28.3 591.5
4 — - .0* 204.5 2.3* 17.7 '247.2
5 — 645.5 6376. 7 44. 8 397.6 369. 3 2424.7
6 — — 2494. 3 1550. 9 N 3687.9 A

( + :less than x2(6, 0.05) value
— @ greater than 9999.9 )

4. Conclusion

In this paper we have investigated the limiting distribution of the vector whose elements are
within triangular boundaries of the ESACF array and the statistics, the QIr and @Dt arrays,
to test the nullity of the vector.



The major advantage of model identification procedure using those statistics is that it can
avoid the difficulties of manual checking the triangular cutting off behavior of ESACF array,
which was the problem of the ESACF approach.

All examples considered were nonseasonal in nature. A study of other seasonal examples is
needed in the future.

Appendix 1. (Proof of Theorem 1)

Let 89 = H;”(B) 6., then the sequence | &} is finite and absolutely summable, because
On is zero for m > g+ and m < 0.
From definition,

[ee]
X =H§i)(B) VVt = Z 0{:” di—m

m=—o0

o0
Vi = HPB W= X 0% 4rm

and
E{ XeXivh Yithts Yithtste |

& iCi (i) k) (k)
=(7-3) ¢t > { 5{,51) Orih Oihrr Omiisrse |
i
oo o L o
(i) il [(k) (k)
A M N AL AN B J NI A
m=—co m=—co
fee] () glCk) i) it
+ot 3 0 Ouliiy 4 Onlh Onihisee }
m=—c0
o) (D plCk) & gitd itk
+ot 3 VA 0m+h+f’+g | 2 m+h m+h+f}
m=—co m=—00

—o-9e £ a0 o, |

+yx(h) vv(g) + Sxv(h+ 1) Sxy(f+g) - Sxv{(h+f+g) Sxv ()
where Sxy (¢) = Hj-i) (F) H* (B) yw (b)

Thus,
E { mx(h) rv(g) + — vx(h) »(g)

1 n—k—g nt—h

T o | & 5 BEXXe YYad | - n() »@
(7]—3)64 n—k—g n—~i—h i) . LB
_ gt 1(k)
(n—z—h) (ﬂ—k_g) sz=:l El { 0:" m+h 0m+s—t 0m+s—t+g ;
1 n—k—g a—i—h
+ Z  Z | Sxv(s—dSxy(s—t—h+g)

(m—i—h) m—k—g) =1 21

+ Sxv(s—t+g) Sxy(s—t—h) |

Applying Lemma 6.2.1 (Fuller, 1976), we have



bm (n—k—g) Cov | ¥x(h), #(g) }

A—ro0

o0 [e]

-0t T T8 e o, )

m=—co =0

+ 2 | Sxv(®) Sxy(.—h+g) + Sxy(t+g) Sxy(t—h) }

=—

For ARMA (p, ¢) time series, yx(h), yv(g) and Sxv(f), t > g+k, < —q—i are zero. If we
let j7=|7~1}, then

0o qtk—j/
:-22 Sxy() Sxy(t—h—q)= X Sxv(t) Sxy(t+j])

t=—q—i

o0
2 Sxy(t+g) Sxy(t—h) =0

t=co

Appendix 2. (Proof of Theorem 2)

Let X is artithmatic mean of X ﬁi'j) series, then the estimated covariance is

/\ n—p—q—i—j i — i —
Yoritp+p = ’__lT' 2 (X8 = X) (X — X)
n—p—1t 12
1 n—p—q—i—j Y i
= . D i P X n—p—q—i—j i p i
n—p=i X o7 Xl Twp=i = X7 +xE)

t=1
b el kit "
n—p—1
and the last two terms, when multiplied by n!/? converges in probabiliry to zero. Therefore

in investigating the limiting distribution of #'/? ¥ +ip+n we need only consider the first term.
Let

nop—q=i—j

I J
Se=nl? X ¥ Ay [

LD ol )
: X0 Xl
i=0 j=i+1 n—p—1t =1
I J 1 n—p—q—i—j L.
— ,1/2 . i
=a2 Yy X A D N A
=0 j=itl i n—p—1 =1

where the A; are arbitrary real numbers (not all zero) and 7" = x "/ x\2.

Now Z» 7 is an (2¢+ i+ j)-dependent covariance stationary time series with mean ¥ +it» +5 and
covariance function

E(Z"" 2" )

)
mtg+j “mth +h+1 }

[ee]
— (,7_3)0-4 _; { 0{'(:‘) ﬁj(i) 01:(1) 0::"(1

+ Ye+iw+id) Ya+i+k) S(B) Sh—7+() + Sth—q—7) Sh+q+1)
where S(8) = H"(B) Hy” (") yw(?)



and it is understood that & =0 for m >g+i and m < 0.

Thus, the weighted average of the Z"” s
I J “ » I J - o

Vi= 2 X AZ07 =20 X aaX0" XL

=1 j=itl j=0  j=i+1
is a stationary time series. Furthermore, the time series Y: is (2¢+/+/)-dependent and has
finite third moment.
Therefore, S» converges in distribution to a normal random variable. Since A:; were arbitrary,

the vector random variable n'“2 (a1, @, ..., ar) converges in distribution to a multivariate nor-
mal by Theorem 5.3.3 (Fuller, 1976).
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