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1. Introduction

The control of a flexible structure requires
control of an infinite dimensional system, since
the flexible system is essentially a distributed
parameter system. To design a realizable cont-
rol system however, the controller dimension
must be substantially smaller, which implies
that a finite dimensional system must be con-
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sidered for the controller design. To avoid this
design difficulty many authors®~!® have used
a reduced-order model, truncating some unimp-
ortant high frequency modes that do not greatly
influence the control system performance. This
approach greatly reduces the system complexity
but Balas® has shown that the residual modes
effects could lead to the instability problem in
the closed loop system due to the control and
observation spillovers: Control spillover is the
excitation of uncontrolled mode by the actuator,
and observation spillover is the sensing of un-
Rece-
Sesak

controlled mode responses by the sensor.
ntly Balas®~®, Skelton and Liking®,



A Design Method for Suboptimal Control of Flexible Structure Vibration 223

and Coradetti” and Sesak and Likins® have
proposed a variety of methods to eliminate such
spilover effects. These works provide a signif-
icant contribution to the solution of control and
observation spillover problem.

In most of the previous approaches they used
a linear dynamic observer to estimate the modal
responses which are not available from the
sensors. When the output feedback scheme is
used for the controller implementation, the same
spillover problem can also arise. This problem
has not been fully investigated and thus, the
objective of this paper is to provide a method
to eliminate the spillover effects for the output
feedback control of a flexible structure. A gen-
eral procedure is presented for the design of an
optimal output feedback controller that suppre-
sses the controlled modes, while stabilizing the
residual modes which are not random variables.
As shown, a basic requirement to achieve this
is that the measurement sensors must be added,
depending upon the number of residual modes
to be included for the controller design. This
requirement is somewhat similar to Balas’ res-
ult®, although the controller form and the de-
sign technique used in his paper is different
from this approach. Illustrative numerical resu-
Its are presented for the control of a simply
supported beam.

2. Control Problem Description

The theoretical development is concerned with
the output feedback control of a class of the
flexible system whose dynamics are governed
by a generalized wave equation. The control
force distribution is provided by P point force
actuators, located at some spatial points z:2(i=
1,2, ---p). Measurements for feedback are taken
by point sensors, consiting of M displacement
measuring devices and A/ velccity measuring

devices located at various spatial points z:%, z°,
respectively.

Theoretically, mechanically flexible systems
require an infinite number of elastic mcdes to
completely describe their behavior. To control
all these mcdes as desired one must design an
infinite dimensional controller. Since it is not
practically possible to design such controller, a
finite dimensional mcdel must be used by rest-
ricting the conirol system to a few significant
modes that are critical to the system perform-
ance. If the neglected modes are present by
some means, they interact with those controlled
modes and thus degrade the system performance.
To take into consideration the effects of these
residual modes for the controller design, let the
system dynamics be represented by state equat-
ions of the form:

= froreses = R u(t)
?R(t) 0 .AR ‘-?R(t) By J
(1a)

and the output equations are given by

. Xn
YO =[Cx} Crl| e (1b)
In the above the controlled state variables xy
consist of the displacement and velocity of NV
vibration modes while the residual mcdes var-
1ables include those of R vibration modes

The system matrices, Ax and A are given

by

0 | I 0 I

Ar=] coreeeencs] A

; (2a)
—Ar i Dr

where Aw, Ar are diagonal matrices whose dia-
gonal entries are the square of the controlled
and residual mode frequencies, @, w,*-:wy and
WNe1, WN, 2o Wrir Lhe matrices Dy, Dr include
the system damping which can be neglected
without loss of generality. The control force
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inputs #(¢) are of the form:

u(t) =" (8), s (£) -+, (D]” @b)
where T denotes the transpose. The associated
input matrices By and Bz are 2 NxXP and 2 R
X P matrices, respectively,

0

BN: il
81(21%), ¢1(227) -1 (2,")

| #v(2), (2 (2,2

-

0
;20—

Bx41(21%), Prs1(22%) - di1(2,%)
(Pr+r(21%), Grar(2:°) + i r(2,)
The output vector y is given by
Q)(t): RAGNAGNRE
Yu()s Yur1 (@) Yar2(), -y (1T (20)
where the first M outputs represent the displa-
cement sensor signals and the other M outputs

are the velocity sensor signals. The output ma-
trices Cv and Cr in equation (1b) are 2MXx
2N and 2 MX2 R matrices,

respectively,

where Cys and Crs are the Mx N matrices
associated with the displacement sensor output,
Cy» and Cp, are the M X R matrices associated
with the velocity sensor output, and

C —’gﬁ:l(zl’), ¢2(21“°)“'¢:N<31‘)jl
L1 (2%, §o(2u) - (2n®) ’
Cu e —¢:1(Z’M+1)’ ¢2(Z:M+l)"'¢:lv<2:M+l):]
"L, Bz

Rd—

_¢N_+1<21’), ¢N+2<Z1:)"'¢N+:R<Z1’> }
[ prs1(220), Grea(Z ) fran(za) |
CR”:[QSNH(EZ’MH), ¢N+z(Z‘M+1)"'¢N+?(Z’M+x>1
O 1(250m), By 2(22m) Py r(2%2w) J
2e)

As stated previously, the control objective is

to suppress the undesired vibration of .the NV

controlled modes. This problem can be formul-
ated as the well-known optimal regulator prob-
lem with quadratic performance index which
represents the vibration energy of those modes.

J=5§, @ Quan+utRu)dt )

where @y and Ry are positive semidefinite and
positive definite weighting matrix, respectively.
If the system in equation (1a) and (1b) sat-
isfies the controllability and observability con-
ditions (Balas'), the output feedback control
law is given by!!

u()=Gy(t) o
Since all the state variables, xx(f) cannot be
accessed directly. The output signal of the in-
dividual sensor contains the residual mode signal
as well as that of the controlled mode. Then
the output equation can be rewritten as

y(t):G(CNZCN"l-CR?fR) &)
where the second term indicates the observation
spillover. Substituting equation (4) into equat-
ion (l1a) yields

i | [Av+BuGCyi ByGCa
dn | | BaGCx | AwtBaGCr

XN
T (6a)
:TR
or in a simple form
Xy XN
e |=H| T (6b)

Examination of the equation (6a) shows that
the controlled and residual modes interact and
excite each other. This implies that, although
the controller is designed to have the controlled
state x»(¥) behave well with the control law
obtained by minimizing the performance index
(3), the controller have a potential to generate
instability of the residual state, xx(£). This
instability mechanism can sericusly degrade the
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Thus a
modified controller design technique is needed

overall control system performance.

to remove the residual mode effects.

3. Suppression of Residual Mode Effect

In this section a design prccedure is develop-
ed, which stabilizes the residual modes while
keeping the controlled mode performance near
optimum. The method is based upon the con-
sideration that the suboptimal feedback gain G
determined by minimizing J in equation (3)
cannot destabilize the residual mcdes, only if it
satisfies,

GCr=0 P,
This consequence can be seen from examination
of the eigenvalues of the system matrix H.
The method consists of two basic steps: first,
determine the suboptimal gain G* which mini-
mize J in (3) subject to the constraint in equ-
ation (7).
around the gain G* obtained in the step 1, so

Second, take a small variation 4G

that the residual modes can have a small stab-
ility margin.

Step 1 The equation GCr=0 implies that the
residual mode signals can be removed from the
controller command signal (4) by adjusting the
controller gain. A basic requirement to achieve
this is that the number of displacement sensors
to be added and the number of the velocity
sensors to be added must be equal to or greater
than the number of residual modes R, respect-
ively. This condition can be derived by the fact
that the rank of Crs in equation (2e) must be
less than the number of element in a row vector
of the gain matrix Gq for the solution of GaCra=
0 to be nontrivial: The gain matrix G is par-
titioned into two submatrices, Gs and G, which
are associated with Cgrq and Cgr,, respectively.
The same condition applies to the nontrivial

solution of G,Cr,=0. If so, using constraint

condition (7) the system equation (6a) can be
rewritten by

in | [AntBGCx 0 ][ 2y
' ®

in | | BiGCy

Xr

Then the poles of the partitioned system matrix
in equation (8) are those of Ax+ByGCy and
Ar due to block triangularity. The poles of
Ax+ByGCy are stable ones, since they are de-
signed to suppress the controlled mcdes. The
poles of Ap are essentially the original ones,
which indicates that the residual mecde eigenv-
alues remains unchanged by the design.

The problem is then: determine the suboptimal
gain G* which minimizes the J, while satisfying
the constraint equation (7). To do this, / in
equation (3) is modified by augmenting the
equality constraint GCr=0

]\:_%.S:({NTQNZCN—{—@TRNy)dt—I—lzg 0:iLGCr]is

),
where [GCrlw is a iftt element of the matrix,
and ¢;; is a Lagrange multiplier. The necessary
condition for G* to minimize such a functional,
7 is that

dj
aG

e (3 Qe i Rt

+7a,§{;; 0ii[GCRL =0 Qo

The necessary condition for the first term has

already been derived by Levine and Athans.¢'V

With the aids of their results the necessary

condition can be summarized as follows:
(RyG*Cx+ByTK)LCy™+0Cr"=0 an
G*Cr=0 (12

where K and L matrices are the solution of the

following two Lyapunov equations,
KAy+ AyTK+Qu+Cy"G**RyG*Cry=0
LA+ AxL+1=0

and Av=Ax+BsG*Cy

These four equations constitute the necessary

(I3
v

conditions for the controller to make the residual
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ruode poles remain unchanged as well as to
minimize the controlled mode vibrations.

Step 2 In practical implementation, it is mo-
re desirable to give a small stability margin to
the residual modes than their poles remain in
the imaginary axis of s-plane. This is because
slightest variation of G may create an instability
in the closed-locp system. If a small variation
4G is taken as G=G*+4G for a stability ma-
rgin of the residual mode, then equation (6 a)
can be rewritten as,

XN Xy XN
| =HA L R AH| T (15)

where [ Av+BaG*Cx | 0
H*= ;
BRG*CN E AR

and [ BuAGCy | ByAGChy
4H= :
| BedGCx | BrAGCr

Since the matrix norm {|4H]|| is bounded for a
small ||4G|l, and thus the eigenvalues A: depe-
nds continuously on the 4H, “%:!® then 44: is
bounded by

viTAHw:
where v:, w: are the row and column eigenvec-
tors of H* corresponding to A:. Furthermore,

from equation (16) and Siriesena and Choi, ¢®

oG - v:fw; (17)

The gradient matrix in equation (17) enables
us to relocate some of the undesirable system
poles by varying the feedback gain G slightly
from the optimally designed G*. In particular,
the residual mode poles can be moved slightly
to left half of the s-plane from the imaginary
axis. The trade-off is that the controlled mode
poles may be shifted from their optimally desi-

gned ones to small variation of the feedback
gain. As long as the stability margin of the
controlled modes is large, as usually the case
for an optimal control problem, the pole shift-
ing of the controlled mode due to this design
change cannot degrade the control performance.

4. Numerical Example: active contro! of a
simply supported beam

The numerical example considers an active
control of a simply supported beam vibration,
which is exactly the same example taken by
Balas.<:® The beam dynamics are modeled by
the Euler-Bernoulli equation

0 (z,t vz, t
Ual) g1 2%al _rop,

0<z<1 ¢t))
where v(z,¢t) is the transverse displacement of

m

the beam and f(z,¢) is the control force input.
The boundary conditions for simple support are
v(2,)=0 at z2=0,1

w(z,t (19
—%iw at z=0, 1

The solution which satisfies equations (18) and
(19) is

v(z, ) ="§1 VI g.(sinnrz (20)

The beam is controlled by a single force act-

uator at z¢,
f(zy t): ‘\/-12— 5;’(2—2“)1,{(0

and one displacement and one velocity sensors

are assumed to be positioned at z=z,* and z=
2%, respectively.

If the controlled modes are the first three
modes (IN=3) and the residual mode is the
fourth mode, the state variables can be defined
as,

AN= {0:(@®), 3D, g:(D}7, xr=q. (D)

If system matrices defined in equations (1 a)
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and (1b) are given by

{ 0 P }
Av= - —
—or 0! |
a0
Lo e
r o 1
Ap= (21 a)
L —CU42 0
0
By= 3| sin 7z*
sin 2 zz® '
sin 3 wz®
0
Br= (21b)
sind rz°
sin 7z.%, sin 2 wz%, sin 3 ©z*
N: ...................................................... M
0
! |
sin w24%, sin 2 w2,’, sin 3 72, _I,
1o

sin4 7z;* 0
CR: 4/‘2_{ R
0 sind 7z,

Simulation results

For convenience the beam parameter, m, E
and I are set to unity, and then the natural
frequencies of the lowest four mocdes are:

w;=9.87, w;=39.48, »;=88.83, w,=151.91
The weighting matrices used for / are given by

Qv=DIAG(1, 1, 1, w?, 0,7, wif}

Ry=0.1
The actuator and sensor locations are given by
S G | N
2 6 5 2y 6 y 23 0.3

When the residual mode(fourth mode) is not
considered for the controller design, the terms
associated with the residual mcde in equations
(21) are all zero, i.e., Ar=0, Br=0, Cr=0.
Using the necessary conditions (11), (13) and
(14), the suboptimal gain G for this case, was

computed via Boggs' method'®. The suboptimal
gain thus obtained may influence stability of
the residual mode, if it is present. Tins effect
is investigated by computing the eigenvalues of
the system matrix given in equation (6a), and
they are listed in Table 1.
table, the fourth mode become unstable, althcugh

As shown in the

the controlled made poles are suboptimally de-
termined and stable.

To remove this instability, the fourth mode
is included for the controller design. In this
case, one displacement sensor was added at
25=0.3 and one velccity sensor at z,=0.2 to
satisfy the number of sensor condition stated
earlier. The schematic of this arrangement is
shown in Fig. 1. Following the methed stated
in “Step 1”7 in section 3, the subcptimal gain
matrix G* was numerically solved from the

Active controlier r

s
7 23 »
z° aﬁm'u{mr Velocity
senscr i Secm
Dispiccement
25 _ 1T T sersor 2

: s ITvelocity sersor2
i 2 s
z

I ¥
£
-

BT »

Fig. 1 Active control of a simply-supported beam

equations (11)~(14). The result given in Table
1, indeed, shows that with the addition of the
constraint GCr=90 the positive part of the pole
of the fourth mcde beccmnes zero. But the poles
of the controlled modes are shifted with the
negative values of the poles all decreased.
Next, the design procedure followed “Step 27
in section 3. The ultimate design objective is
to have the imaginary pole of the fourth mede
shifted to the left half plane of the s-plane by
adjusting the gain G* determined in “Step 1”.
Therefore, it is necessary to examine the gra-
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Table 1 Eigenvalues of the controlled and residual modes
Residual modes is not B
Uncontrolled considered: GCr=90

Controller | 1. 465165

gain 4] —24. 39965 —3. 259755

GT 0 —11. 18565 —2.158731

—3. 259755
1st +79.8696 —1. 6237157~ 7 10. 0334 ~—0. 8067089+ j 9. 8786
2nd -7 39.4784 —3. 235834+ 7 38.9195 —1.903202 7 39. 4098
3rd —- 7 88. 8264 —1. 208554 7 88.7351 1. 4457107 j 88. 7075

4th + 7 157.9137 2. 002140 7 158. 0338 0 =+;157.9137

dient matrix in equation (17). Let the 7 th
eigenvalue A: be denocted by

A=at B (1=1,2,3,4) (22)
Since G={g,&2 8 &4, the gradient matrix
gg‘ can be computed from equation (17) and
given by
oa; :{ da: da; da; ou; 1
ogi 0g1’ 08, 083 084,
—0.06138, 0.14462, 0.54018, 0. 10513
0.90013, 0.29332, 0.29124, 0.29383
—0.54912, 0.10638, —0. 64527, 0.33347

—0. 28963, —0. 18082, —0. 18614, 0. 17890
@23

This matrix shows sensitivity of the real part
of the eigenvalue 1; to the variation of the
feedback gain. As mentioned ealier, during the
pole shifting process, it is desirable to make the
variation of the controlled mode poles as small
as possible, so that the new poles may not be
greatly deviated from their optimal values. The
great deviation of the new controlied mede poles
makes the performance of controller worse.
From the gradient matrix (23), it can be seen
that variation of the gain g, makes the contr-
olled mode poles deviated from their optimal
values relatively less than the variations of the
other gain elements (g;.g3,g,) do. Therefore,
in this simulation, the g, &; and g, are unch-
anged and only g, is varied so that the fourth

mode can have a small stability margin J; this
0 value can be set equal to the negative real
value of the fourth mode pole a, It is noted
that, unless the 6 value is chosen sufficiently
small, the controtled mode poles may be und-
esirably shifted. Due to this pole shifting, the

gain g, is changed by

(—3d) for small

gz:gz*”l‘—gl >0

Therefore, by specifying the § value as desired,
the new gain, g, can be computed from this
equation. With this redesigned gain g, and the
other gains g, g, and g, unchanged, the eigen-
values of the closed loop system were computed
again from the system matrix of equation (6 a).
In this computation § was varied frcm 10-7 to
1071, In Table 2, the variation of the gain g,
and the correspending pole shifting of the con-
trolled modes can be seen for the various va-
lues. Both the gain and the poles are barely
changed. These results indicate that with only
a small sacrifice of the controlled mcde perfor-
mance, the residual mcde can be effectively st-
abilized by this design, otherwise unstable.

To demonstrate the effectiveness of this design
further, time responses of the beam vibration
are shown in Fig. 2(a) 2(b) and 3. These
responses were taken at 2=0. 3 with the follow-
ing initial conditions:

2(0)=1{1.0,1.0,1.0,0. 1} 7, £(0)=1{0,0,0,0}7
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Table 2 Pole shiftings of the controlled and residual modes with & value
\ Stability margin, §
| ‘ 1x1077 1x107 1x10°
Controller
gain —3. 259755 ~—3. 2597544 —3. 2597494 —3. 2596997
&2
lst .—0.8067089= j 9. 8786 —0. 8067087 j 9. 878590;—0. 8067080 7 9. 878590 | —0. 8067008~ ; 9. 8786
2nd ~1.9032027 7 39. 4098 |~ 1.903202=  39. 40976 |—1.903201 7 39.40976 | ~1.903186 j 39. 4098
3rd —1.445710= j 88.7075 |—1.445710== j 88.70754 |—1. 4457107 j 88.70754 | —1.445704= j 88.7076
4th ! — j 157.9137,—0.99129 1077 —0.99144 107 —0.99145 107°
! ! =7 157.9137 -+ 7 157.9137 ~=7157.9137
' Stability margin, &
| 1x10°* 1X10°3 1X10°2 [ 1% 107
Controller
gain —3. 2592019 —3.2542247 —3.2044522 —2. 7067274
&2
Ist |—0.8066289= 7 9. 8786 | —0. 8059098+ 7 9.8786 | —0.7987201+ 7 9. 8788 ~ —0. 7268988+ j 9. 8808
2nd |—1.903041= 7 39.4098 | —1.9015867~ j 39.4096 | —1. 887036+ 7 39.4117 | —1.7415417 7 39. 4281
3rd i— 1. 445651 7 88.7076 | —1. 445124 7 88.7077 | —1.439847= 7 88.7091 | —1.386958-= 7 83.7230
4th 1-0.99145 107¢ —99.146 107° —0.99150 1072 —0.99198 107!
‘ == 7 157.9137 = 7157.9136 —-157. 9131 ) == 7 157. 9078
*The other gains remain unchanged as in Table 1: g,=1.465165, g:=—2.158731, g.=—3.259755
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Fig. 2(a) depicts the case when the residual
mode (fourth mode) is not considered for the
controller design. It shows an unstable response
due to the slowly growing amplitude of the
residual mode, although the controlled modes
are decayed out. When the observation spilover
term is removed, (GCr=0) the response (Fig.
2(b)) does not decay out, oscillating with the
residual mode frequency. At steady state only
the residual mode oscillation will last, as can
be observed from the eigenvalues in Table 1.
However, with the slight variation of g, from
—3. 259755 to —2.7067274, this oscillatory re-
sponse becomes stabilized, as shown in the
lower figure of Figure 3. In this figure only
the residual (fouth) mode response is redrawn
for clarity, since comparision of the two figures
(Fig. 2(b)) and (the upper figure of Fig. 3)
shows no remarkable difference until about 2
sec. If the response time is taken longer, total
controlled mode response of Fig. 3 will eventu-
ally die out, since the residual mode will be
decayed out with the prescribed decay rate 6=
1x107%

5. Conclusions

A general method has been developed for the
design of an optimal output feedback controller
which suppresses certain selected residual modes
as well as the controlled modes. This design
method is based upon the pole shiftings of the
residual modes otherwise unstable in such a
way that those modes can have a small stab-
ility margin with only a small sacrifice of the
suboptimally-determined controlled mode perf-
ormance. Basic requirement to achieve this is
that the measurement sensors have to be added,
depending upon the number of residual modes
to be suppressed. An illustrative numerical re-
sult has been presented for the control of a

simply supported beam. The resuit shows that
this controller design methed can effectively
remove the instability mechanism induced by
the residual mocdes, thus achieving the control
performance as desired.
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