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Nomenclature
a, : Fourier coefficients
C: : Amplification factors
Cy : Constant-strain specific heat (unit
mass)
D : Eh3/12(1—1v?), plate flexural rigidity
e D€ t+€rntEss
E : Young’s modulus
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: Function defined in Eq. (4)

: Shell thickness

: ¥/ —1, imaginary unit

: Thermal conductivity

s Eh/(1—37)

: The changes in curvatures of middle

surface

: Dimensions along a,, @, coordinates
: Quantity defined in Eq. (10)

: Radii of shell curvatures in ay,a,
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coordinates
¢ : Time coordinate
AT : T—T,, temperature disturbance
To : Constant reference absolute temper-
ature
U : Strain energy
4U : Energy dissipated
w : Deflection of shell in a; coordinate
W : Normal modes (with subscripts)
ai, &, a3 - Orthogonal curvilinear coordinates
a: : Linear thermal coefficient of expansion
I : Quantity defined in Eq. (14)
d : Logarithmic decrement (with subscri-
pts)
0(...) : Delta function
4 : Toa*E/pc,, thermal relaxation str-
ength
€ : Mechanical strain tensor
7 : Damping loss factors (with subscripts)
7o : dlwz/ (1+w%*?) ], Debye formula
N : Quantity defined in Eq. (13)
g : Dimensionless constant (=1)
) : Poisson’s ratio
: Factor defined in Eq. (23)
o : Material density
Oi; : Mechanical stress tensor
T : pc.h?/7*k, dimensionless time
) : Frequency (with subscripts)
dw ! w,—w,, half-power bandwidth
I : Nabla operator
. : 0/0t, time derivative
Subscripts
(<o) : Property of kt* (or mnt*) vibration
mode
(o) max : Maximum value of (...)
P : Plate
s : Shell

1. Introduction

Material damping arises from several physical

sources, and it is therefore difficult to predict
accurately. Nevertheless, reasonably accurate
damping information is often required to design
a system properly for dynamic loadings. There
exists considerable literature on both analytical
and experimental aspects of the subject. Lazan”
and Nowick and Berry® provide useful sum-
maries of what was known up to their dates of
publication. The author has found, however,
relatively few fundamental theoretical studies
of internal energy dissipation (or material dam-
ping).

The inherent dissipation in monolithic solids
tends to be small compared to the damping
furnished artificially by dashpots, constrained
viscoelastic layers or interconnections, joints and
bearings. This is believed to explain why the
role of material damping is frequently omitted
or underplayed in the extensive literature on
damping analysis and active control of Large
Space Structures (LSS). Several authors (e.g.,
Gevarter®®, Ashley®) have given some con-
sideration to the possibly important role of
material damping on the stabilization of struc-
tures. Reference (4) observed that a tiny amount
of structural damping is useful for meeting the
control system requirements of LSS like teles-
copes and antennas in space.

In order to analyze the internal energy dissi-
pation of a given structure, one should take into
account all possible damping mechanisms, de-
pending upon the specific material. In practical
cases, however, one or two mechanisms generally
predominate, the others being comparatively
negligible.

In 1938, Zener® predicted that thermoelastic
damping (simply thermal damping) of monolithic
crystalline solids is often much greater than the
damping due to all other mechanisms. Experi-
ments of Bennewitz and Ro&tger® confirmed
that his predictions are accurate. Thermal dam-
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ping is almost universal. But, under certain
conditions with high electromagnetic (EM) field,
(simply
electromagnetic damping) is even of a larger

the electromagneto-elastic damping

order of magnitude.

2. Thermal Damping Analysis

2.1 Background

Zener®™ ™ was apparently the first to point
out that the energy dissipation in vibrating
metals must be sought in stress inhomogeneities,
giving rise to temperature gradients and hence
to local thermal currents which increase the
entropy. Biot®® discussed irreversible thermo-
dynamics in vibrating systems and applied a
generalized coordinate method to the calculation
of internal energy dissipation. Tasi and Herr-
mann‘® 1 inyestigated a crystal plate by means
of a variational principle. Chadwick¢?, in 1962,
showed that his results from normal mode
analysis agree with Zener's theory, Later,
Alblas® developed a general theory of energy
dissipation in a three-dimensional finite body.

2.2 Basic Formulation
The two governing equations of the linearized
coupled thermoelasto-dynamics are given by % 4

Dy fw+ (—@—) Vlﬁg}:;zlzath%d%+Ehl7;.4w

1—y
+phy fib=p *F )
2 _ pCv 3 (a:AT)
P (dT) —(-£) 24
_ ToatzE _ai
“E(1-2) o @
where

7o = e e

+ azz [7%7 ﬁ; aagz) 1)

A,, A, are Lamé parameters and ;> and p?

are two and three dimensional Laplacian opera-
tors in orthogonal curvilinear coordinates (a,
a,, i), respectively. Note that a; is the coor-
dinate in the direction normal to the middle
surface of a shell defined by (ay, a,). F'is the
external force and the other symbols are defined
in nomenclature.

Equation (1) is the equation of transverse
motion, which is believed sufficiently accurate
to estimate quickly the effects of curvatures in
relatively shallow shells. Equations for plates
and beams are readily recovered by forcing the
of shell R,=R,=c and
aoisson’s ratio, v=0. Because of this adapta-

radii curvatures,
bility, plates and beams are easily recovered
from the results obtained by solving Egs. (1)
and (2) for shallow shells. Equation (2) is the
heat conduction equation, in which the influence
of the curvatures of shell on thermal flux is
neglected. One notes that the two governing
equations include small coupling terms between
elastomechanical and thermodynamic behaviors
which give rise to the damping of the vibration.
The general theory of shallow shells usually
assumes as above the normal stress og; is
negligible along with shear strains €3 and €.
Under this assumption, the reduced Hooke’s law
and the strain-displacement relations‘® appro-
ximately give the dilational part of the displa-
cement field (simply dilatation) in the form

€=¢€1; €1 €3

E—I: 11—_2; :la3712w+|:%]m47‘ (3)

From the physics of the situation and the

forms of Egs. (2) and (3), a logical approxi-
mation to the elastomechanical coupling would
seem to be

aedT (@, @z a5, ) Zf (@) 7w (y, @z ), (4)
which reduces Egs. (1) and (2) into the forms:
D(1+in) 7 fw+ Ehp sw+ phy Hio=p*F (5)



804 Usik Lee

ayr +[ 7w _( pcs0 ) 7w ]f

da32 Vlzw k Vfw
pc.d  pitw _
RSy i 0 ©
where
ﬂgEImag. part of {T(lé‘__v_)s}ilhzlzf(a‘g) a3da3
7
A= Toang
PCy
_ 1+ ~
=14 4~ =) J=1

One notes that only the imaginary part of the
integration in Eq. (7) is taken because of its
contribution to the damping of vibration. The
modified equation of motion (5) now contains
the complex plate flexural rigidity D(1+7:). 7
is approximately equal to unity because always
the thermal relaxation strength 4<1¢%.

In order to investigate free vibration, one
assumes harmonic motion in the form

w= icmn Wmneiwt: ;’ock Wkeiwt (8)

(Indices mn are replaced by % for convenience.)
Here C. is the amplification factor of the At*
normal mode, W;, which satisfies the following

equations:
Dy @ Wi+ Ehy it Wi— phowip We=0 9)
54 WiWidA=Mdu (10)

where dA=da,da, is the plate area element
and 8 is the Kronecker delta. It is convenient
to expand f(as) in Fourier series, following the

lead of Zener®,
fla) = Sassin(2p+1) T4 (1n

which satisfies insulated boundary conditions at
the upper and lower shell surfaces. These are
appropriate to the vacuum of space, and one
assumes no energy loss due to heat convection
or radiation. Substituting Egs. (8) and (11)
into Eq. (6) and using the orthogonality property
of Fourier sefies, one may solve for the coeffi-

cients ¢, of Eq. (11) to find that a,<a, for
p>1. Therefore, a one-term approximation is
acceptable with an error typically <2%:

flag) =[fatif]sin T, (12)
where
_ 1 4k w?r?
o= zt 1—v 1+w?c?
_ 1 4k wr
fi= 81—y 1+ w?z?

Here we used the approximations #=1 and
O[ (h/L)2]=0 for the shallow shells. ¢ is the
characteristic time, which controlled by the
choice of material, specimen shape and size,
defined by

__ pCh?
=L

Substituting Eq. (12) into Eq. (7) gives
= 96 < 14y )[A T j| (13)

zt\ 1—v 1+ wc?
Here the square-bracketed portion of Eq. (13)
is called the Debye formula, %p.

2.3 Free Vibration

Consider free vibration with forcing F=0
and assume harmonic motion, Eq. (8). Then,
using the orthogonality property of Eq. (10),
the equation of motion can be reduced in the

form
oh(w?—wi?) +in: (Is—phwi®y =0 (14)
where
W,
T :["mn:E _V_j‘_.L
* L 7itWe

Because of small #,, I'x are treated as a constant
without causing significant error. In fact, I'xis
found to be constant for the simply supported
structure with harmonic motions considered in
this study.

One measure of free-oscillation decay is the
logarithmic decrement, which yields the modal
damping loss factor, as follows:

_53_%_&< 1+v )A WiT ‘: @ ]2(15)

T i 1—v 1+wit? L o
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where
Iy

22
WE"=Wr"— .
oh

2.4 Forced Vibration

Consider the vibration forced by a concent-
rated load acting at point (@, @.). In terms of
modal modes governed by Eq. (9), Eq. (5)
can be written

ph% (wkz—wz) CkW);—l'm;i (Pk—p/’lwf) C]; W]z
=Py (a,—ay) 0 (a,—a&,) (16)
Using again the orthogonality property of Eq.
(10), one finds the amplification factors Ciy,
as follows:

Ci= P Wi (@, a,)

ORML[ (wr? — w?) +i7:(wr®

—I+/ph)]
amn
As an estimate of damping, the half-power
bandwidth do=w,—w, is ready obtained from
the amplication factor Ci. Then one measure

of damping for the %** mode of vibration is

simply
do . 96 ( 1+v WiT @ :lz
we — w\ 11—y ) 1+wk272[ Wk

(18)
which proved identical to the logarithmic decre-
ment, Eq. (15).

Another classical measure of damping is the
loss factor », defined as the ratio of energy
dissipated in unit volume per radian of oscillation
to the maximum strain energy per unit volume,
that is

aU

Here

v=1{{" 1 JdadA  (20)
=5 ) 011611 T 022622 |A A5

[ 2z
AU= SAS_/:/ZSD (O11é11+ Oanérnldwt dosd A
@n

In Egs. (20) and (21), approximations have

been made consistent with the foregoing deri-

vations. Space limitations prevent reproducing
detail of a consistent analysis, which leads to
the expression

_ 96 [ 1+v Wt
=21 )A el (22)

with
{ [Ku+K,1vdA

=
SA[K211+2VK11K22+K222]dA

(23)

where K,; and K,, are bending strains®®, In
any practical examples, [7>1 since »<0.5.
However, one notes that /=1 for the structures
vibrating one-dimensionally like beam-plates.
For the simply supported structures, considered
in this paper, /7 has the general form:

s () v () T

=
ST () v ) () ) |
(29)
where C; is the magnitude of Ci Eq. (17).

L, and L, are the full dimensions of a structure
along the coordinates «; and a,, respectively.
Note that N=1 for the rectangular flat plates
and curved panels, and N=2 for the cylindrical
shells and barrel-shaped shells®®,

Investigation of amplification factor Cx shows
that the A** normal mode predominates when
the circular frequency o is near the k** natural
frequency w:. Then one can use the approxi-

mation

~ 96 [ 1+
e >A (0w, (25)

where the T, (or II..) for simply supported
structures are given by

(B ()
() e () () ()

(26)
The kt* modal loss factors for simply sup-

”mn:

ported structures, without further approxim-

ation, are readily obtained from Eq. (22) in the
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_ 9 7 liv )A WiT I, @7)

1+ wiic?
3. Discussion of Results

Equations (15), (18) and (27) provide mea-
sures of modal damping at frequencies near
natural frequencies. For structures vibrating
one-dimensionally, such as beams and beam-
plates, these equations give exactly identical
results as the case of mass-spring-dashpot
system. In general, however, there exists no
unique expression suitable as a measure of
damping, even at a natural frequency. One
may therefore ask which measure of damping
is the most meaningful and accurate. The author
has concluded that this question has no definitive
answer. As Jones™ observed, this ambiguity
is really not a serious problem. When comparing
different materials and configurations, one must
simply employ consistent, clearly defined mea-
sures. As far as small damping is concerned,
every measure must provide the same useful
information. For this reason, the author has
adopted the loss factor % as a vehicle for
further investigations.

How to maximize the loss factor seems to be
the most interesting issue for damping analysis.
Maximization of damping is not a simple
matter, because of the complicated charac-
teristics of vibration problem. Figures 1 through
3 have been calculated to illustrate factors, 17,
and loss factors, 7, for simply supported
structures with same surface areas (ie., L,=
L,=2m). As a preliminary, Fig. 1 and study
of Ci, Eq. (17), demonstrate that factor 7 is
nearly independent of circular frequency and
structural thickness. These factors are clearly
important for the part of 7, of Eq. (13).

Figure 2 shows that loss factor increases at

very low frequencies and decreases at high
frequencies as the thickness increases. It also
demonstrates that loss factor is almost propor-
tional to the reference absolute temperature.

From earlier development, for a given material
and structure, y» and /1 can be represented by

= (w, ) =0 (L, L, m, n) (28)
Then it is obvious that »» has its maximum
value at frequency w=1/r, which is called the
Debye peak. The thickness for maximum 7, is
readily obtained from

k /2 (29)
0C.w

/’l%n[

Since damping plays its most important role at
frequencies near natural frequencies, it is
valuable to maximize the modal factor X, of

Eq. (26). An optimal combination of geometry
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and mode of vibration for the maximum value
of ., is found to be

Ly ppm
T=N (30)

Equations (29) and (30) will be useful for
designers who wish to maximize the damping

of vibration of the sort considered here.

Consider the modal loss factors of the plates
and shells which are made of same material.
At a natural frequency, when the same dimen-
sions (L,, L;) and mode (m,#n) are selected for
the plate and shell, it follows that

s _ Ws 1 +wp27-'
Mo Wy 1+ w’r

Since w,ws>1/7 in general, the modal loss factor
of a plate tends to be larger than that of a
shell. Figures 1 and 3 show that plates do
indeed have the largest damping, followed by
panels, cylinders, beam-plates and simple beams.
The damping of a panel gets closer to that of
a plate as it gets flatter. Also the damping of
a curved panel gets closer to that of cylinder
as it approaches the shape of the cylinder (see
Fig. 3). It is also found that the damping of a
barrel shaped shell is larger than that of a
cylinder, but again it gets closer to the other
as the radius of barrel curvature increase.
Figure 4 has been calcurated to illustrate the
modal damping loss factors for simply supported
and partially clamped plates at the first five
fundamental frequencies. Simply supported plates
achieve higher damping than partially clamped
plates. Structural material dependence of loss
factors is shown in Fig. 5. Aluminum structures
achieve higher loss factor than steel structures

(31)

at most frequency ranges except at very low
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frequencies.

Recently, an experimental damping measure-
ment was conducted by Edberg®®, He developed
a new testing method wherein possible every
external influence on the test specimen was
eliminated to the maximum extent possible,
except for the telemetry package mounting. The
test results for an aluminum beam at four
different frequencies of vibration are shown in
Fig. 6. Taken as a whole, the data agree well
with the author’s theoretical predictions, within
experimental error. The author thus has con-
fidznce that the theorstical damping loss factor
defined by Eq. (22) is also valid for the dam-
ping predictions of the other structures.

Without observation of what is really happe-
ning inside the material, it seems to be very
difficult to clarify the foregoing results with a
reasonable physical interpretation. From the
heat conduction Eq. (2), however, one can
conclude that the structure will experience
higher damping when the rate of dilatation
gets larger. When the geometry and boundary
conditions for a particular structure are likely
to increase the rate of dilatation, the structure
will achieve great damping. Constraints on a
structure seem to prevent increasing the rate
of dilatation with increasing natural frequency.
Curved and clamped structures have more
constraints than flat and simply supported
structures. For more detailed discussion, the

reader is reffered to the author’s earlier work?,
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