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REMARKS ON SURJECTIVITY OF
¢-ACCRETIVE OPERATORS

SEHIE PARK AND JONG AN PARK

In [2] and [3], the authors obtained surjectivity results on generalized locally
p-accretive operators. In the present paper, we note that strongly upper semicon-
tinuous map defined in [2] is single-valued and continuous, and restate the results
in [2], [3] more accurately. Further, we raise open problems on the duality map
J of a Banach space.

Let us define the duality map J from a Banach space X into 2¥* as follows:

J@)= e X <a, 2t k=0l
for z€X, where X* is the dual of X. By the Hahn-Banach theorem, J(z)#¢
for all z€X.

Let Y be a Banach space and J its duality map. In [2], J is said to be
strongly upper semicontinuous if the following condition holds:

(1) if limgoee ¥a=y, »F€J(y,), and y*€J(y), then »* is a subsequential
(strong) limit of {y,*}.

We note that such J is single-valued and continuous. For, if lim,,.y,=y and
Yo" EJ(y,), then for any y*&J(y), we have lim,,. y,*=-»*. Otherwise, we can
find e2>0 and {y,*} such that ‘ly,*—3y*||=e. Since 3,¥€J(Vn), ¥m—y, and
y*&J(y), y* is a subsequential limit of {y,*}, a contradiction. Hence, J(¥)
is single.

The example of a strongly upper semicontinuous single-~valued map F which is not
continuous in [2] is incorrect.

The duality map J is said to be lower semicontinuous if the following condition
holds:

(2) if lim, .y,=y and y*€J(y), then there exists a scquence {y,*] such that
yn*e'](yn) and limy e In* = Ve

Let X and Y be Banach spaces and ¢:X—Y* a map satisfying the following:

(3) ¢(X) is dense in Y*, and

(4) for each 2&X and each a>0, llg(x)||<|l2ll and ¢(az) =ag(x).

A map P:X-»Y is said to be locally strongly ¢-accretive [1] if for each ye Y
and r>>0 there exists a constant ¢>0 such that

(5) if [Px—y]|<r, then, for all ue X sufficiently near to z,

<{Pu—Pz, ¢(u—a)>=clu—all’
Moreover, a map P:X—Y is said to he generalized locally ¢—accretive [3] il
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for each y€ Y and >0 there exists a nonincreasing function c¢: [, ©0)—(0, c0)
such that

6) if ||Px—yl|<r, then, for all #=X sufficiently near to z,
{Pu—Px, ¢lu—z)>=c(jlzlDlle—zl.
Note that (5) implies (6), and not conversely.
Now our main result in [2] can be restated as follows:

THEOREM 1. Let X and Y be Banach sapces and P: X—Y a locally Lipschitzian
and locally strongly ¢-accretive map.

(i) If the duality map J of Y is l.s.c., then P(X) is open.

(i) Further, if P(X) is closed, then P is surjective.

Note that slight modification of the proof of Theorem 2 of [2] works for The-
orem 1. The following is obtained in [3_, as a generalization of Theorem 1.

THEOREM 2. Let X and Y be Banach spaces and P: X— Y a locally Lipschitzian
and generalized locally ¢-accretive map.

(1) If the duality map J of Y is l.s.c., then P(X) is open.

(i1) Further, if P(X) is closed, then P is surjective.

Finally, we raise open problems in regard to the above remarks:

(a) Is there any concrete Banach space such that its duality map is not single-
valued and l.s.c.?

(b) Is there any necessary and sufficient condition on the norm of a Banach
space in order that J is not single-valued and l.s.c.?

It is well-known that J is single-valued ifl the norm is Gateaux differentiable.
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