REMARKS ON SURJECTIVITY OF \$\phi\$-ACCRETIVE OPERATORS

Sehie Park and Jong An Park

In [2] and [3], the authors obtained surjectivity results on generalized locally ϕ -accretive operators. In the present paper, we note that strongly upper semicontinuous map defined in [2] is single-valued and continuous, and restate the results in [2], [3] more accurately. Further, we raise open problems on the duality map J of a Banach space.

Let us define the duality map J from a Banach space X into 2^{x*} as follows:

$$J(x) = \{x^* \in X^* \mid \langle x, x^* \rangle = ||x^*||^2 = ||x||^2 \}$$

for $x \in X$, where X^* is the dual of X. By the Hahn-Banach theorem, $J(x) \neq \phi$ for all $x \in X$.

Let Y be a Banach space and J its duality map. In [2], J is said to be strongly upper semicontinuous if the following condition holds:

(1) if $\lim_{n\to\infty} y_n = y$, $y_n^* \in J(y_n)$, and $y^* \in J(y)$, then y^* is a subsequential (strong) limit of $\{y_n^*\}$.

We note that such J is single-valued and continuous. For, if $\lim_{n\to\infty} y_n = y$ and $y_n^* \in J(y_n)$, then for any $y^* \in J(y)$, we have $\lim_{n\to\infty} y_n^* = y^*$. Otherwise, we can find $\varepsilon > 0$ and $\{y_{n_k}^*\}$ such that $\|y_{n_k}^* - y^*\| \ge \varepsilon$. Since $y_{n_k}^* \in J(y_{n_k})$, $y_{n_k} \to y$, and $y^* \in J(y)$, y^* is a subsequential limit of $\{y_{n_k}^*\}$, a contradiction. Hence, J(y) is single.

The example of a strongly upper semicontinuous single-valued map F which is not continuous in [2] is incorrect.

The duality map J is said to be *lower semicontinuous* if the following condition holds:

(2) if $\lim_{n\to\infty} y_n = y$ and $y^* \in J(y)$, then there exists a sequence $\{y_n^*\}$ such that $y_n^* \in J(y_n)$ and $\lim_{n\to\infty} y_n^* = y_*$.

Let X and Y be Banach spaces and $\phi: X \to Y^*$ a map satisfying the following:

- (3) $\phi(X)$ is dense in Y*, and
- (4) for each $x \in X$ and each $\alpha > 0$, $\|\phi(x)\| \le \|x\|$ and $\phi(\alpha x) = \alpha \phi(x)$.

A map $P: X \to Y$ is said to be *locally strongly* ϕ -accretive [1] if for each $y \in Y$ and r>0 there exists a constant c>0 such that

(5) if $||Px-y|| \le r$, then, for all $u \in X$ sufficiently near to x,

$$\langle Pu-Px, \phi(u-x)\rangle \geq c||u-x||^2.$$

Moreover, a map $P:X \rightarrow Y$ is said to be generalized locally ϕ -accretive [3] if

for each $y \in Y$ and r > 0 there exists a nonincreasing function $c : [0, \infty) \to (0, \infty)$ such that

(6) if $||Px-y|| \le r$, then, for all $u \in X$ sufficiently near to x,

$$< Pu-Px, \ \phi(u-x) > \ge c(||x||)||u-x||^2.$$

Note that (5) implies (6), and not conversely.

Now our main result in [2] can be restated as follows:

THEOREM 1. Let X and Y be Banach sapces and $P: X \rightarrow Y$ a locally Lipschitzian and locally strongly ϕ -accretive map.

- (i) If the duality map J of Y is l.s.c., then P(X) is open.
- (ii) Further, if P(X) is closed, then P is surjective.

Note that slight modification of the proof of Theorem 2 of [2] works for Theorem 1. The following is obtained in [3], as a generalization of Theorem 1.

THEOREM 2. Let X and Y be Banach spaces and P: $X \rightarrow Y$ a locally Lipschitzian and generalized locally ϕ -accretive map.

- (i) If the duality map J of Y is l.s.c., then P(X) is open.
- (ii) Further, if P(X) is closed, then P is surjective.

Finally, we raise open problems in regard to the above remarks:

- (a) Is there any concrete Banach space such that its duality map is *not* single-valued and l. s. c.?
- (b) Is there any necessary and sufficient condition on the norm of a Banach space in order that J is not single-valued and l.s.c.?

It is well-known that J is single-valued iff the norm is Gâteaux differentiable.

References

- 1. W. A. Kirk, Caristi's fixed point theorem and the theory of normal solvability, Proc. Conf. Fixed Point Theory and its Applications (Dalhousie Univ., June 1975), Academic Press, 1976. pp. 109-120.
- J.A. Park and Sehie Park, Surjectivity of φ-accretive operators, Proc. Amer. Math. Soc. 90 (1984), 289-292.
- 3. Sehie Park and J.A. Park, Surjectivity of generalized φ-accretive operators, Proc. Symp. Pure Math., Vol. 44, Amer, Math. Soc., 1985.

Seoul National University Seoul 151, Korea

Kangweon National University Chuncheon 200, Korea