SOME GENERALIZATION OF THE LANG'S EXISTENCE OF RATIONAL PLACE THEOREM

IN-HO CHO AND JONG IN LIM.

1. Introduction

Let K be a real function field over a real closed field F. Then there exists an F-place $\varphi: K \to F \cup \{\infty\}$. This is Lang's Existence of Rational Place Theorem (6). There is an equivalent version of Lang's Theorem in (4). That is, if K is a function field over a field F, then, for any ordering P_0 on F which extends to K, there exists an F-place $\varphi: K \to F' \cup \{\infty\}$ where F' is a real closure of (F, P_0) .

In [2], Knebusch pointed out the converse of the version of Lang's Theorem is also true.

By a valuation theoretic approach to Lang's Theorem, we have found out the following generalization of Lang and Knebusch's Theorem. Let K be an arbitrary extension field of a field F. Then an ordering P_0 on F can be extended to an ordering P on K iff there exists an F-place of K into some real closed field R containing F. Of course $R^2 \cap F = P_0$. The restriction K being a function field of F is vanished, though the codomain of the F-place is slightly varied. Therefore our theorem is a generalization of Lang and Knebusch's theorem.

2. Preliminaries and Main Theorem

By an ordering on a field F, we mean a subset $P \subseteq F$ such that $P+P \subseteq P$, $P \cdot P \subseteq P$ and $P \cup (-P) = F$. From these axioms, it is easy to see that $P \cap (-P) = \{0\} [4]$.

The set of all orderings on F will be denoted by X_F . If $P \in X_F$, then the pair (F, P) is called an ordered field. For an extension field K of F, an ordering $Q \in X_K$ is said to extend $P \in X_F$, if $Q \cap F = P$. By a valuation on a field F, we shall always mean Krull valuation $v: F \to \Gamma$ onto an ordered group Γ , satisfying the two axioms

- (1) v(xy) = v(x) + v(y) for any $x, y \in \dot{F} = F \setminus \{0\}$, (2) $v(x+y) \ge \min\{v(x), v(y)\}$ for $x, y, x+y \in \dot{F}$.
- For a given valuation v as above, we can define the following collection of associated objects.

 $A := \{x \in F \mid x=0 \text{ or } v(x) \geqslant 0\}$ (the valuation ring of v), $\mathcal{M} := \{x \in F \mid x=0 \text{ or } v(x) > 0\}$ (the maximal ideal of v), $U := A \setminus \mathcal{M}$ (the group of valuation units),

We usually write \bar{x} for $x+\mathcal{M}$, and say $(v, A, \mathcal{M}, \Gamma, \cdots)$ is a valuation instead of saying v is a valuation. We shall write $a \geqslant_r b$ if $a-b \in \dot{P} = P \setminus \{0\}$.

THEOREM 1. Let $P \in X_F$, and $(v, A, \mathcal{M}, \Gamma, \cdots)$ be a valuation on F. Then the following statements are equivalent (5).

- (1) $0 < pa \le pb \Rightarrow v(a) \ge v(b)$ in Γ .
- (2) A is convex with respect to P.
- (3) M is convex with respect to P.
- (4) $1+\mathcal{M}\subseteq P$.

DEFINITION 1. If any (and hence all) of the conditions in Th. 1 holds for v and P, we shall say v is compatible with P (or that P is compatible with v).

In case P is compatible with v, the image of $P \cap A$ under the projection $A \rightarrow \bar{F}$ gives a well-defined ordering \bar{P} on \bar{F} . We shall denote the orderings compatible with v by X_F^v .

THEOREM 2. Let (K, P) be an ordered field. For any subfield $F \subseteq K$. let A(F, P) be the convex hull of F with respect to P. Then we have $A(F, P) = \{a \in K | \exists b \in F \text{ such that } -b \leq a \leq b\}$ and A(F, P) is a valuation ring of K. The unique maximal ideal I(F, P) of A(F, P) consists of infinitely small elements of K[A].

A valuation is called real if its residue class field is a formally real field. The following theorem by Baer and Krull [1], [3] is as crucial as Theorem 2 in our proof of main theorem.

THEOREM 3. Let v be a real valuation of F. Then any ordering Q on \bar{F} can be lifted to an ordering on F. That is, there exists $P \in X_F^*$ such that $\bar{P} = Q$. See (4).

We can now prove our theorem. We begin with an easy lemma.

LEMMA. Let K, K' be extension fields of a field F. If there exists an F-place $\varphi: K \rightarrow K' \cup \{\infty\}$, then the residue class field \overline{K} of the associated valuation of φ satisfies the relation $F \subseteq \overline{K} \subseteq K'$, where the inclusions are obtained by identifications.

Proof. This is obtained by a simple consideration of valuation theory.

MAIN THEOREM. Let (F, P_0) be an ordered field, and K an extension field of F. Then $P_0 \in X_F$ can be extended to an ordering P on K iff there exists an F-place φ of K into some real closed field R with $R \subseteq F$ and $R^2 \cap F = P_0$.

Proof. (The only if part) Since $P_0 \in X_F$ is extended to $P \in X_K$, (K, P) is an ordered field extension of (F, P_0) . By Theorem 2 we have a natural valuation ring $A(F, P) \supseteq F$ and the associated place $\pi: K \to \overline{K}$ $(=A(F, P)/I(F, P)) \cup \{\infty\}$, So we can identify F as a subfield of \overline{K} by definition of A(F, P).

Then π becomes an F-place, and (\bar{K}, \bar{P}) is an ordered field extension of (F, P_0) . Denoting a real closure of (\bar{K}, \bar{P}) by R, we get the desired F-place φ by compositing the associated place π with the inclusion of (\bar{K}, \bar{P}) into R.

(The if part) Assume that there exists an F-place φ of K into some real closed field R with $R \subseteq F$ and $R^2 \cap F = P_0$. Then we have $F \subseteq \overline{K} \subseteq R$ by the lemma, where \overline{K} is the residue class field of the associated valuation v of φ . If $R^2 \cap \overline{K} = Q \in X_{\overline{K}}$, then the tower of fields $(F, P_0) \subseteq (\overline{K}, Q) \subseteq (R, R^2)$ becomes a tower of ordered fields. The ordering Q on \overline{K} can be lifted to $P \in X_K^v$ by Theorem 3. Then we have $P \cap F = \overline{P \cap F} = \overline{P} \cap F = Q \cap F = P_0$, i.e., $P \subseteq X_K$ extends the given ordering P_0 on F.

References

- R. Baer, Zur Topologie der Gruppen, J. Reine Angew. Math. 160 (1929) 208-226.
- R. Elman, T.Y. Lam and A. Wadsworth, Orderings under field extensions,
 J. Reine Angew. Math. 306 (1979) 7-27.
- W. Krull, Allgemeine Bewertungstheorie, J. Reine Angew. Math. 167 (1931) 160-196.
- T.Y. Lam, The theory of ordered fields. Ring Theory and Algebra III (ed. by Mcdonald). Lecture Notes in Pure and Applied Math. Vol. 55, 1980, Dekker, New York, 1-152.
- Orderings, Valuations and Quadratic Forms., CMBS Regional Conference Series in Math. Number 52, 1983, A.M.S.
- 6. S. Lang, The theory of real places, Ann. Math. 57, 1953, 378-391.

Korea University Seoul 132, Korea