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SOME GENERALIZATION OF THE LANG’S EXISTENCE
OF RATIONAL PLACE THEOREM

In-Ho CHO aND Jong IN Lim.

1. Introduction

Let K be a real function field over a real closed field F. Then there exists an
F-place ¢:K—FU {oo}. This is Lang’s Existence of Rational Place Theorem (6).
There is an equivalent version of Lang’s Theorem in (4). That is, if X is a
function field over a field F, then, for anv ordering Py on F which extends to
K, there exists an F-place ¢! K—F'U {co} where I is a real closure of (F, Py).

In [2], Knebusch pointed out the converse of the version of Lang’s Theorem
is also true.

By a valuation theoretic approach to lang’s Theorem, we have found out the
following generalization of Lang and Knebusch’s Theorem. Let K be an arbitrary
extension field of a field F. Then an ordering P, on I can be extended to an
ordering P on K iff there exists an F-place of K into some real closed field R
containing F. Of course R*NF=P,. The restriction K being a function field of
I’ is vanished, though the codomain of the F-place is slightly varied. Therefore
our theorem is a generalization of Lang and Knehusch’s theorem.

2. Preliminaries and Main Theorem

By an ordering on a field F, we mean a subset PCF such that P+PCP,
P-PTP and PU(--P) - F. From these axioms, it is easy to see that PN (—P)
=10} [4].

The set of all orderings on F will be denoted by Xp. 1f PeXy, then the pair

(F, P) is called an ordered field. TFor an extension field K of F, an ordering
QEXx is said to extend P&Xp, if QM F=P. By a valvation on a field F, we
shall always mean Krull valuation v:F—7" onto an ordered group 7', satisfying
the two axioms

) vlay)=v(x)+v(y) for any x,ycF= F\{0},
(2) v(azdy) Zminfo(a), vy }or z,y, a+yck.
For a given valuation v as above, we can define the following collection of
associated objects.
Ar={reF Jz=0 or v(z)>:0] (the valuation ring of »),
fi:={xeFla=0 or v{z) >0} (the maximal ideal of v),
U: =A% (the group of valuation units),
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F:=A/0 (the residue class field of v),

z:F—F U {oo} denote the place associated with e,
x+M if zA
We usually write T for a+M, and say (v, A, 0, T,---) is a valuation instead
of saying v is a valuation. We shall write a> .6 if a—2cP, and a>>,bif a—b

eP=r\{0}.

THEOREM 1. Let P Xp, and (v, A, W, I',--) be a valuation on F. Then
the following statements are equivalent (5).
(1) 0<pa<<ph 2 via)=v(d) in I.
(2) A is convex with respect to P.
(3) M is convex with respect te I.
1) 1+M=P.

DerFINITION 1. If any (and hence all) of the conditions in Th. 1 holds {or v
and P, we shall say v is compatible with P (or that P is compatible with v).

In case P is compatible with v, the image of PN A under the projection A—»J
gives a well-defined ordering P on F. We shall denote the orderings compatible
with v by X}§.

THEOREM 2. Let (K, P) be an ordered field. For any subfield FC.K. let A(F,
P) be the convexr hull of F with respect to P. Then we have A(F,P)={acK|
dbe F such that ~b\a<b} and A(F, P) is a valuation ring of K. The unique

mazimal ideal I(F, P) of A(F, P) consists of infinitely small elements of K [4].

A valuation is called real if its residue class field is a formally real field. The
following theorem by Baer and Krull [1], 3] is as crucial as Theorem 2 in our
proof of main theorem.

THEOREM 3. Let v be a real valuation of F. Then anv ordering Q on I can
be lifted to an ordering on F. That is, there exists P <X} such that P—=().
See (4).

We can now prove our theorem. We begin with an easy lemma.

LeMMA. Let K, K' be extension fields of a field F. Lf there exists an F-place
@:K—K'U {cc}, then the residue class field K of the associated wvaluation of
o satisfies the relation FCRCK', where the inclusions are obtained by identi-

fications.

Proof. This is obtained by a simple consideration of valuation theory.

MAIN THEOREM. Let (F, Py) be an ordered field, and K an extension field of
F. Then Py Xy can be extended to an ordering P on K iff there exists an F-
place ¢ of K into some real closed field R with RCF and R F=P,.
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Proof. (The only if part) Since Py Xy is extended 0o PeXg, (K, P) is an
ordered field extension of (F, P;). By Theorem 2 we have a natural valuation
ring A(F, P) 2 F and the associated place z:K—K (=A(F, P)/I(F, P)) U {=}, So
we can identify F as a subfield of K by definition of A(F, P).

Then = becomes an F-place, and (K, P) is an ordered field extension of (F,
Py). Denoting a real closure of (K, P) by R, we get the desired F-place ¢ by com-
positing the associated place = with the inclusion of (&, F) into R.

(The if part) Assume that there exists an F-place ¢ of K into some real
closed field R with RCF and RNF=P,. Then we have FCRKCSR by the
lemma, where K is the residue class ficld of the assoclated valuation v of ¢. If
RINR-QcXp then the tower of fields (F, Pp) (K, Q)& (R, R?) hecomes a
tower of ordered fields. The ordering @ on K can be lifted to PE X} by Theorem
9. Then we have PNF=PNF=PnF=QNF=P), i.¢c, PcXg extends the
given ordering I’y on F.
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