REDUCIBILITY OF SUB-LINEAR POLYNOMIALS OVER A FINITE FIELD

STEPHEN D. COHEN

Let $f(x) = \sum_{i=1}^{m} a_i x^i$ be a polynomial of degree m with coefficients in F_q , the finite field of order q. For each positive integer n associate with f the *linear polynomial* $\hat{f}_n(x)$, defined by

$$\hat{f}_n(x) = \sum_{i=1}^m a_i x^{q^{ni}},$$

and what we shall term the sub-linear polynomial $f_n^*(x)$, defined by

$$f_n^*(x) = \sum_{i=1}^m a_i x^{(q^{ni-1})/(q^{n-1})}$$

Thus $\hat{f}_n(x) = x f_n^*(x^{q^{n-1}})$. When n=1 we write \hat{f} and f^* for \hat{f}_1 and f_1^* , respectively.

Suppose f is an irreducible polynomial over F_q . Then (see [4] and [5]) the linear polynomial \hat{f} has the interesting property that the degree of every irreducible factor of $\hat{f}(x)/x$ is equal to N, the period (order or exponent) of f which is the least integer for which $\hat{f}(x)$ divides x^N-1). Further, provided (N,q-1)=1, Mills [3] has shown that every irreducible factor of the sub-linear polynomial $f^*(x)$ also has degree N and, in general, that the degree of every such factor of $f_n^*(x)$ always divides nN.

In this note we indicate that there is another number associated with f (which we shall call the sub-period and denote by M) which appears to be more relevant than the period N in discussing sub-linear polynomials. Define M as the least positive integer for which f(x) divides x^M-a for some a in F_q . (Hirschfeld [1] and Kang [2] refer to M as, respectively, the subexponent and Shinwon number of f).

The following properties of the sub-period are fairly obvious (see [1], p.7).

- (i) M divides $(q^m-1)/(q-1)$,
- (ii) N = Me, where e is the order of a in F_q ,
- (iii) M=N, whenever (N, q-1)=1.

Further, Mills [3] has shown that there is a connection between polynomials and their sub-linear associates similar to the connection between polynomials and their

linear associates, see [4].

LEMMA 1. f(x) divides g(x) if and only if $f_n^*(x)$ divides $g_n^*(x)$.

Theorem 2. Suppose that f(x) is an irreducible polynomial over F_q with subperiod M. Then the degree of every irreducible factor of $f_n^*(x)$ divides nM.

Proof. Since f(x) divides $x^M - a$ then $f_n^*(x)$ divides $x^{(q^{nM-1})/(q^n-1)} - a$ which, in turn, divides $x^{q^{nM}} - x$.

S. W. Kang [2] has proved that, if $f(x) = x^2 - x - a$ is an irreducible quadratic over a prime field F_p with sub-period p+1 then $f^*(x) = x^{p+1} - x - a$ is also irreducible over F_p . This is a special case of the following much more general result.

Theorem 3. Suppose that f(x) is an irreducible polynomial over F_q with subperiod M. Then the degree of every irreducible factor of $f^*(x)$ is M.

Proof. We can suppose $f(x) \neq ax$. Suppose that E(x) is an irreducible factor of $f^*(x)$ of degree D. Then, by Theorem 2, D divides M. Since E is irreducible and divides

$$x^{q^{D}-1}-1=\prod_{b(\pm 0)\in F_q}(x^{(q^{D}-1)/(q-1)}-b),$$

E(x) divides $x^{(q^{D-1)/(q-1)}}-c$ for some c in F_q . Suppose that the remainder on dividing x^D-c by f(x) is r(x) so that the degree of r(x) is less than the degree of f(x). We claim that, in fact, r(x)=0. Otherwise, by Lemma 1, we have

$$x^{(q^{D-1})/(q-1)}-c=G(x)f^*(x)+r^*(x)$$

so that, in fact, E(x) divides $r^*(x)$. Now, of course, f and r are co-prime so that there are polynomials u(x) and v(x) in $F_q[x]$ such that u(x)f(x)+v(x)r(x)=1. Put g(x)=u(x)f(x) and s(x)=v(x)r(x). Then, by Lemma 1 again, $f^*(x)|g^*(x)$ and $r^*(x)|s^*(x)$ while

$$g^*(x) + s^*(x) = 1$$

We conclude that E(x) divides 1, a contradiction. Hence r is the zero polynomial and so D=M.

EXAMPLE 1. Since $x^4+4=(x^2+2x+2)$ (x^2-2x+2) it follows that, if $q=-1 \pmod 4$, then $f(x)=x^2+2x+2$ is an irreducible quadratic over F_q with subperiod 4. We deduce from Theorem 3 that in this case $f^*(x)=x^{q+1}+2x+2$ is the product of $\frac{1}{4}(q+1)$ irreducible polynomials of degree 4.

Mills [3] also showed that for certain values of n>1 the bound nN for the degree of the factors of $f^*(x)$ can be attained provided $(N, q^n-1)=1$. We now show that, actually, the bound nM of Theorem 2 can be attained, a necessary

condition being $(M, (q^n-1)/(q-1))=1$.

Theorem 4. Suppose that f is an irreducible polynomial over F_q with sub-period M and n is a positive integer. Let $M^*=M/(M,(q^n-1)/(q-1))$ and suppose that, in fact, every prime which divides n also divides M^* . Then every irreducible factor of $f_n^*(x)$ has degree nM^* .

Proof. We first prove that, for any n, the sub-period of f regarded as a polynomial in $F_q n[x]$ is equal to M^* .

Suppose f(x) divides x^M-a , where $a \in F_q$. Then there is a primitive element r in $F_q n$ for which $a=r^{(q^n-1)/e}$, where e is the order of a. Now e/q-1 and $r^{(q^n-1)/(q-1)}$ is a primitive element of F_q so that (M, (q-1)/e)=1. Let $L=(M, (q^n-1)/(q-1))$ and $(q^n-1)/(q-1)=QL$. Then $(M^*, Q(q-1)/e)=1$. Moreover,

$$x^{M}-a=x^{LM}^{*}-\beta^{L}=\prod_{i=1}^{L-1}(x^{M}^{*}-\zeta^{i}\beta),$$

where $\beta = r^{Q(q-1)/e}$ and ζ is a primitive L-th root of unity (necessarily in $F_q n$). Thus, over $F_q n$, f(x) divides $x^{M*} - \zeta^i \beta$, say, and M^* is clearly the least integer with such a property.

We deduce from Theorem 3 that the degree of every irreducible factor of f_n^* (x) over $F_q n$ is M^* , or puting this another way, we have deg $(F_q n(\alpha)/F_q n) = M^*$ where α is any zero of $f_n^*(x)$. It follows that $\deg(F_q n(\alpha)/F_q) = nM^*$ and hence, if $I = \deg(F_q(\alpha)/F_q)$, then I divides nM^* . To complete the proof, we show that, for the particular values of n stated, $I = nM^*$. If, however, this is not the case, then a prime p which divides nM^*/I also divides M^* and so I divides nM_1 where $M_1 = M^*/p$. But this implies that $\alpha \in F_q nM$ and that $\deg(F_q n) = M_1$, a contradiction.

EXAMPLE 2. Over F_{11} , $x^3+5=(x+3)(x^2-3x-2)$. In fact, clearly x^2-3x-2 is irreducible with sub-period 3 (and period 30). Let $n=3^s$ for any s. Then, by Theorem 4, $x^{11^s+1}-3x-2$ is the product of irreducible polynomials of degree 3^{s+1} .

EXAMPLE 3. Over F_5 , x^4+x-1 is an irreducible polynomial dividing $x^{78}-2$ and so has sub-period 78 (and period 312). Let $n=3^s13^t$ for any s and t. Then $\left(\frac{1}{4}(5^n-1),78\right)=1$, so that $M^*(=M)=78$. Thus $x^{5^{3n}+5^{2n}+5^{n+1}}+x-1$ is the product of irreducible polynomials of degree 78n.

References

- 1. J. W. P. Hirschfeld, Projective geometries over finite fields, Oxford, 1979.
- 2. S. W. Kang, Remarks on finite fields, Bull. Korean Math. Soc. 20(1983), 81-85.

- 3. W.H. Mills, The degrees of the factor of certain polynomials over finite fields, Proc. Amer. Math. Soc. 25(1970), 860-863.
- 4. O. Ore, Contributions to the theory of finite fields, Trans. Amer. Math. Soc. 36(1934), 243-274.
- 5. N. Zierler, On the theorem of Gleason and Marsh, Proc. Amer. Math. Soc. 9(1958), 236-237.

Department of Mathematics, University of Glasgow, Glasgow, G12 8QW, Scotland