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REDUCIBILITY OF SUB-LINEAR POLYNOMIALS
OVER A FINITE FIELD

STEPHEN D. COHEN

Let f(x) :é a;x' be a polynomial of degree m with coefficients in F,, the

finite field of order ¢q. For each positive integer n associate with f the linear
polynomial f,(x), defined by

m

fn (‘T) :LJ_‘ ai‘xqm.’

il

and what we shall term the sub-linear polynomial f,*(z), defined by
F¥ () = Lm_l ;7@ =D /@D

Thus f,(x) =xf,* (2 1). When n=1 we write F and fF* for £, and fi*, respec-
tively.

Suppose f is an irreducible polynomial over F,. Then (see [4] and [5]) the
linear polynomial f has the interesting property that the degree of every irredu-
cible factor of f(z)/z is equal to N, the period (order or exponent) of f which
is the least integer for which F(x) divides xN—1). Further, provided (N,q—1)
=1, Mills [3] has shown that every irreducible factor of the sub-linear polyno-
mial f*(x) also has degree N and, in general, that the degree of every such fa-
ctor of f,*(x) always divides aN.

In this note we indicate that there is another number associated with f (which
we shall call the sub-period and denote by M) which appears to be more relev-
ant than the period N in discussing sub-linear polynomials. Define M as the least
positive integer for which f(z) divides #M—a for some a in F,. (Hirschfeld [1]
and Kang [2] refer to M as, respectively, the subexponent and Shinwon number
of f).

The following properties of the sub-period are fairly obvious (see [1], p.7).

(i) M divides (g™—1)/(g—1),
(i) N=DMe, where e is the order of a in F,,
i) M=N, whenever (N,g—1)=1.

Further, Mills [3] has shown that there is a connection between polynomials and
their sub-linear associates similar to the connection between polynomials and their
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linear associates, see [4],
LEMMA 1. f(2) divides g(z) if and only if f,*(x) divides g,*(z).

THEOREM 2. Suppose that f(z) is an irreducible polynomial over F, with sub-
period M. Then the degree of every irreducible factor of f,*(x) divides nM.

P OOf. Since f(l‘) divides x“—a then (.T divides {1‘('2,“‘1 b /ig D‘d \Vhi(f}l,
n
in turn, diVidES .anM"*Zl‘.

S.W. Kang [2] has proved that, if f(z) =2®—x—a is an irreducible quadratic
over a prime field F, with sub-period p-+1 then @) =2t ~2—a s also irre-
ducible over F,. This is a special case of the following much more general result.

THEOREM 3. Suppose that f(x) is an irreducible polynomial over Fy with sub-
period M. Then the degree of every irreducible factor of f*(2) is M.

Proof. We can suppose f(z)+ax. Suppose that E(z) is an irreducible factor
of f*(x) of degree D. Then, by Theorem 2, D divides M.
Since E is irreducible and divides

2= I (z@PD/@D _py

BADOEF, ’
E(x) divides 29”"D/@ D _¢ for some ¢ in F,. Suppose that the remainder on
dividing 2P—¢ by f(z) is r(2) so that the degree of r(2) is less than the deg-
ree of f(x). We claim that, in fact, r(z)=0. Otherwise, by Lemma 1, we have

2@ DICD =G (2) £*(2) +r4(a)

so that, in fact, E(x) divides r*(a). Now, of course, [ and r are co-prime so
that there are polynomials #(x) and v(r) in Fola] such that #(2) f(2) +v(z)r(2)
=1. Put g(2)=u(2)f(2) and s(2) =v()r(z). Then, by Lemma 1 again, f*(x)
lg*(x) and r*(2) |s*(2) while

g4 () st (1) =1
We conclude that E(x) divides 1, a contradiction. Hence 7 is the zero polynomial

and so D=M.

EXAMPLE 1. Since 2*+4=(22422+2) (22—22+2) it follows that, if g==—1
(mod 4), then f(a)=1x2+2z+2 is an irreducible quadratic over F, with sub-
period 4. We deduce from Theorem 3 that in this case S¥(a) =291 422 4+2 is the

product of i«(q-%l) irreducible polynomials of degree 4.

Mills [3] also showed that for certain values of n>>1 the bound =N for the
degree of the factors of f*(x) can be attained provided (N,¢"—1)=1. We now
show that, actually, the bound »M of Theorem 2 can be attained, a necessary
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condition being (M, (¢"—1)/(g—1)) =1.

THEOREM 4. Suppose that f is an irreducible polynomial over F, with sub-per-
iod M and n is a positive integer. Let M*=M/(M, (¢"—1)/(g—1)) and supp-
ose that, in fact, every prime which divides n also divides M¥*. Then every ir-
reducible factor of f,*(x) has degree nM*.

Proof. We first prove that, for any », the sub-period of f regarded as a pol-
ynomial in Falz] is equal to M*,

Suppose f(z) divides ¥ —a, where acF,. Then there is a primitive element
r in Fpn for which a=r@"D7¢ where e is the order of . Now e/g—1 and r&~
D7D s a primitive element of F, so that (M, (g—1/e)=1. Let L=(M, (¢"—
D/ (@—1D) and (g"—1)/(g—1) =QL. Then (M* Q(g—1)/e) =1. Moreover,

* L--1 * .
M —a= M gl I (oM* i),

where f=r9@D/¢ and ¢ is a primitive L-th root of unity (necessarily in Fyn).
Thus, over Fyn, f(z) divides #M*—~({i8, say, and M* is clearly the least integer
with such a property.

We deduce from Theorem 3 that the degree of every irreducible factor of f,*
(x) over Fon is M*, or puting this another way, we have deg (Fyn(a)/Fmn) =
M* where a is any zero of £,*(z). It follows that deg (Fon(a) [ F,) =aM* and
hence, if I=deg (F,(a) {Fg), then I divides nM*. To complete the proof, we
show that, for the particular values of  stated, I=nM*. If, however, this is
not the case, then a prime p which divides nM*/I also divides M* and so I di-
vides nM; where M;=M*/p. But this implies that aSFmnM and that deg (Fn
() /Fyn) =M, a contradiction.

EXAMPLE 2. Over Fiy, 2%+5= (2 +3) (22—=3z—2). In fact, clearly 22—32—2 is
irreducible with sub-period 3 (and period 30). Let n=3° for any s. Then, by
Theorem 4, a'*"*!—3x—2 is the product of irreducible polynomials of degree 31,

EXAMPLE 3. Over Fs, 2% f2—1 is an irreducible polynomial dividing 27—9
and so has sub-period 78 (and period 312). Let n=313 for any s and ¢t. Then

(% (5"—1), 78) =1, so that M*(=M):=78. Thus 2575541 11 is the product

of irreducible polynomials of degree 78x.
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