ON THE RADIUS PROBLEM OF CERTAIN ANALYTIC FUNCTIONS

O.P. AHUIA

1. Introduction

Let A denote the family of functions f which are analytic in the unit disk $\Delta = \{z : |z| < 1\}$ and normalized such that f(0) = 0 = f'(0) - 1. Ruscheweyh [4] introduced the classes $\{K_n\}$ of functions $f \in A$ which satisfy the condition

(1.1)
$$Re\{D^{n+1}f/D^nf\} > \frac{1}{2}, \ z \in \mathcal{A},$$

where

$$D^n f = z(z^{n-1}f)^{(n)}/n!, n \in N_0 = \{0, 1, 2, \dots\}.$$

He proved that $K_{n+1} \subset K_n$ for each $n \in \mathbb{N}_0$.

Let $\{R_n(\alpha)\}\$ denote the classes of functions $f \in A$ which satisfy the condition

(1.2)
$$\operatorname{Re}\left\{z(D^{n}f)'/D^{n}f\right\} > \alpha, \ z \in \Delta$$

for some $\alpha(0 \le \alpha < 1)$. We have $R_0(\alpha) \equiv S^*(\alpha)$ and $R_1(\alpha) \equiv K(\alpha)$ for $0 \le \alpha < 1$, where $S^*(\alpha)$ and $K(\alpha)$ are the well known classes of functions of order α and convex of order α , respectively. The classes $R_n \equiv R_n(0)$ were considered by Singh and Singh [6]. It is easy to see that for each $n \ge 0$, $R_n(\alpha) \subseteq R_n(0)$, and for each $n \ge 1$, $R_n(\alpha) \subseteq K_n$.

We first prove that $R_{n+1}(\alpha) \subset R_n(\alpha)$, $0 \le \alpha < 1$, $n \in N_0$. These inclusion relations establish that $R_n(\alpha) \subset S^*(\alpha)$ for each $n \ge 0$ and $R_n(\alpha) \subset K(\alpha)$ for each $n \ge 1$. We then deal with the problem of the radius of $R_{n+1}(\alpha)$ in $R_n(\alpha)$.

2. Radius problem

We need the following Lemma due to I.S. Jack [3] which is also due to Suffridge [7].

LEMMA 1. Let w be a nonconstant and analytic function in |z| < r < 1, w(0) = 0. If |w| attains its maximum value on the circle |z| = r at z_0 , then $z_0w'(z_0) = kw(z_0)$, where k is a real number and $k \ge 1$.

LEMMA 2. $R_{n+1}(\alpha) \subset R_n(\alpha)$ holds for all $n \in N_0$ and α $(0 \le \alpha < 1)$.

Proof. Let $f \in R_{n+1}(\alpha)$. Define w, analytic in Δ by

(2.1)
$$\frac{z(D^n f)'}{D^n f} = \frac{1 + (2\alpha - 1)w(z)}{1 + w(z)}.$$

It is easy to see that w(0) = 0 and $w(z) \neq -1$ for $z \in \Delta$. It sufficies to show that |w(z)| < 1, $z \in \Delta$.

Using the identity

(2.2)
$$z(D^n f)' = (n+1)D^{n+1} f - nD^n f,$$

we can rewrite (2.1) as

(2.3)
$$\frac{D^{n+1}f}{D^nf} = \frac{(n+1) + (n+2\alpha-1)w(z)}{(n+1)(1+w(z))}.$$

Taking the logarithmic derivative of (2.3) we get

$$(2.4) \qquad \frac{z(D^{n+1}f)'}{D^{n+1}f} = \frac{1 + (2\alpha - 1)w(z)}{1 + w(z)} - \frac{2(1 - \alpha)zw'(z)}{(1 + w(z))(n + 1 + (n + 2\alpha - 1)w(z))}.$$

We now claim that |w(z)| < 1 for all $z \in \Delta$. For otherwise, by Lemma 1 there exists a point $z_0 \in \Delta$ such that $z_0 w'(z_0) = kw(z_0)$ with $|w(z_0)| = 1$ and $k \ge 1$. Applying this result to (2.4) we obtain

$$\operatorname{Re}\left\{\frac{z_0(D^{n+1}f(z_0))'}{D^{n+1}f(z_0)}\right\} \le \alpha - \frac{k(1-\alpha)}{n+\alpha}$$

$$\le \alpha, \text{ for each } n \ge 0$$

This contradicts the hypothesis that $f \in R_{n+1}(\alpha)$. Hence we conclude that |w(z)| < 1 for all $z \in \Delta$. This completes the proof of Lemma.

In [1], Al-Amiri has obtained the radius of K_{n+1} in K_n . In view of Lemma 2, we raise the natural question of finding the largest disk $\Delta_r = \{z : |z| < r, 0 < r \le 1\}$ so that if $f \in R_n(\alpha)$, then

$$\operatorname{Re}\left\{\frac{z(D^{m}f(z))'}{D^{m}f(z)}\right\} > \alpha, \ m>n, \ z\in\Delta_{r}.$$

Let B denote the class of functions w(z) that are analytic in Δ and satisfy the conditions (i) w(0) = 0 and (ii) |w(z)| < 1 for $z \in \Delta$. We need the following Lemma due to Singh and Goel [5].

LEMMA 3. Let P(z) = (1+lw(z))/(1+w(z)), $a = (1-lr^2)/(1-r^2)$, $d = (1-l)r/(1-r^2)$, then for |z| = r, $0 \le r < 1$, we have

$$\begin{split} & \operatorname{Re}(kP(z) + l/P(z)) - \frac{r^2|P(z) - l|^2 - |1 - P(z)|^2}{(1 - r^2)|P(z)|} \\ & \geq \begin{cases} 2 \left[(1 + k) (1 + l) a \right]^{1/2} - 2a, & R_0 \geq R_1 \\ \frac{k + l + 2l (1 + k) r + l (1 + lk) r^2}{(1 + r) (1 + lr)}, & R_0 \leq R_1 \end{cases} \end{split}$$

where $R_0^2 = (1+l)a/(1+k)$, $R_1 = a-d$, $k \ge 1$, $-1 \le l < 1$.

We now prove our main result in the following

THEOREM. Suppose $\alpha_0(n)$ is the smallest positive root of the equation

$$(2.5) 4(n^2+2n+5)x^4+4(n^3-n^2+n-13)x^3-(12n^3+9n^2+58n-15)x^2+4(2n^3+7n+3)x-4=0$$

lying in the interval (α_1, α_2) , where $\alpha_1 = (n-1)^2/(n^2+2n+5)$, $\alpha_2 = 2/\{2n+1+(4n^2+4n+9)^{1/2}\}$.

If $f \in R_n(\alpha)$, then

(2.6)
$$\operatorname{Re}\left\{\frac{z(D^{n+1}f(z))'}{D^{n+1}f(z)}\right\} > 0$$

holds for

(2.7)
$$|z| < r(n, \alpha) = \begin{cases} r_1, & 0 \le \alpha \le \alpha_0(n) \\ r_2, & \alpha_0(n) \le \alpha < 1, \end{cases}$$

where

(2.8)
$$r_1 = \frac{n+1}{2-3\alpha-\alpha n + \{(1-\alpha)(3-5\alpha-2\alpha n + (1-\alpha)n^2)\}^{1/2}}$$

and

$$(2.9) r_2 = \left\{ \frac{\alpha (n^2 + 2n + 5) - (n - 1)^2}{4\alpha (n + \alpha) - (1 - \alpha) (n^2 - 1) + \left\{2\alpha (1 - \alpha) (-5n^2 + 8(2 - \alpha) (n + \alpha)\right\}^{1/2}} \right\}^{1/2}.$$

The bounds for |z| in (2.7) are sharp.

Proof. Since $f \in R_n(\alpha)$, we have

(2.10)
$$\frac{z(D^n f(z))'}{D^n f(z)} = \frac{1 + (2\alpha - 1)w(z)}{1 + w(z)},$$

where $w \in B$ for all z in Δ . Using (2.2) in (2.10), we get

(2.11)
$$\frac{D^{n+1}f(z)}{D^nf(z)} = \frac{n+1+(n+2\alpha-1)w(z)}{(n+1)(1+w(z))}.$$

Taking logarithmic derivative of (2.11) we have

$$(2.12) \qquad \frac{z(D^{n+1}f(z))'}{D^{n+1}f(z)} = -n + (n+1)P(z) - \frac{(1-l)zw'(z)}{(1+w(z))(1+lw(z))}$$

where P(z) = (1+lw(z))/(1+w(z)) and $l = (n+2\alpha-1)/(n+1)$. An application of Dieudonne's Lemma [2] that

$$|zw'(z)-v(z)| \le \frac{|z|^2-|w(z)|^2}{1-|z|^2}, w \in B, z \in \Delta$$

to the second term of (2.12) yields

(2.13)
$$\operatorname{Re}\left\{\frac{z(D^{n+1}f(z))'}{D^{n+1}f(z)}\right\} \ge \frac{-(1+l+n(1-l))}{1-l} + \frac{1}{1-l}\left[\operatorname{Re}\left\{((n+1)(1-l)+1)P(z)+l/P(z)\right\}\right] - \frac{r^{2}|P(z)-l|^{2}-|1-P(z)|^{2}}{(1-r^{2})|P(z)|}\right].$$

We note that $-1 \le l < 1$ for all α , $n(0 \le \alpha < 1, n \ge 0)$. Since $k = (n+1)(1-l)+1 \ge 1$, on using Lemma 3 in (2.13), we obtain

(2. 14)
$$\operatorname{Re}\left\{\frac{z(D^{n+1}f(z))'}{D^{n+1}f(z)}\right\} \ge \frac{-(2a+(1+l)+n(1-l))}{1-l} + \frac{2}{1-l}\left\{(2+(n+1)(1-l))(1+l)a\right\}^{1/2}$$

for $R_0 \ge R_1$, and

$$(2.15) \qquad \operatorname{Re}\left\{\frac{z(D^{n+1}f(z))'}{D^{n+1}f(z)}\right\} \ge \frac{(n+2\alpha-1)(2\alpha-1)r^2+2(\alpha n+3\alpha-2)r+(n+1)}{(n+1)(1+r)(1+(n+2\alpha-1)r)}$$

for $R_0 \le R$, where $a = (n+1-(n+2\alpha-1)r^2)/(1-r^2)$,

$$R_0 = \frac{1}{n+1} \left\{ \frac{(n+\alpha) (n+1-(n+2\alpha-1)r^2)}{(2-\alpha) (1-r^2)} \right\}^{1/2}$$

and

$$R_1 = \frac{n+1+(n+2\alpha-1)r}{(1+r)(n+1)}.$$

Now Re $\{z(D^{n+1}f(z))'/D^{n+1}f(z)\}>0$ yields the equations

(2.16)
$$F_1(r) = (2\alpha - 1)(n + 2\alpha - 1)r^2 + 2(\alpha n + 3\alpha - 2)r + n + 1 = 0$$

for $R_0 \leq R_1$ and

(2.17)
$$F_2(r) = [8\alpha^2 - 3\alpha - 1 - 2(1 - 3\alpha)n - (1 - \alpha)n^2]r^4 - 2[4\alpha(n + \alpha) - (1 - \alpha)(n^2 - 1)]r^2 + \alpha(n^2 + 2n + 5) - (n - 1)^2 = 0$$

for $R_0 \ge R_1$.

The two minima given by (2.14) and (2.15) become equal to each other for such a $\alpha(0 \le \alpha < 1)$ and $n(n \ge 0)$ for which $R_0 = R_1$. This equation reduces to

(2.18)
$$(n+2\alpha-1)(n+2\alpha-2)r^3 + (n+2\alpha-1)(n+6-2\alpha)r^2 - (n+1)(n+4\alpha-6)r - (n+1)(n+2) = 0.$$

We note that $F_1(0) = n+1 > 0$, and $F_1(1) = 2(2\alpha^2 + \alpha(2n+1) - 1) < 0$ if $\alpha < \alpha_2 = 2/[2n+1+(4n^2+4n+9)^{1/2}]$. Hence $F_1(r)$ has a root in (0,1) if $\alpha < \alpha_2$. Its smallest root in (0,1) for $\alpha < \alpha_2$ is r_1 . Similarly, $F_2(0) = \alpha(n^2+2n+5) - (n-1)^2 > 0$ if $\alpha > \alpha_1 = (n-1)^2/(n^2+2n+5)$, and $F_2(1) = -4(1-\alpha) < 0$. Thus we conclude that the

smallest root in (0,1) of $F_2(r)$ is r_2 if $\alpha > \alpha_1$. The transition point for the two cases may be obtained by eliminating r from (2.16) and (2.18) is the smallest positive root $\alpha_0(n)$ of the equation

$$4(n^2+2n+5)\alpha^4+4(n^3-n^2+n-13)\alpha^3-(12n^3+9n^2+58n-15)\alpha^2+4(2n^2+7n+3)\alpha^2+4(2n^2+7n+3)\alpha^2+4(2n^2+3n+3)\alpha^3+4(2n^2+3n+3)\alpha^2+4(2$$

where $\alpha_0(n)$ lies in the interval (α_1, α_2) . This completes the proof of the theorem.

The functions given by

$$\frac{D^{n+1}f(z)}{D^nf(z)} = \frac{n+1-(n+2\alpha-1)z}{(n+1)(1-z)}$$

and

$$\frac{D^{n+1}f(z)}{D^{n}f(z)} = \frac{n+\alpha}{n+1} + \frac{(1-\alpha)(1-z^{2})}{(n+1)(1-2z\cos\theta+z^{2})},$$

where $\cos \theta$ is the solution of

$$\frac{n+1-2(n+\alpha)r\cos\theta+(n+2\alpha-1)r^2}{1-2r\cos\theta+r^2} - \left\{ \frac{(n+\alpha)(n+1-(n+2\alpha-1)r^2)}{(2-\alpha)(1-r^2)} \right\}^{1/2}$$

show that the results in the above Theorem are sharp.

REMARK 1. For n=0, Theorem gives the radii of convexity of $S^*(\alpha)$, the results were obtained earlier by Singh and Goel [5].

REMARK 2. For n=0, $\alpha=1/2$ the above Theorem yields $r_1=1$ and $r_1=(2\sqrt{3}-3)^{1/2}$. Because of what we have mentioned in the Theorem, $r_1=1$ is impossible. Hence $r_2=(2\sqrt{3}-3)^{1/2}$ is the radius of convexity for the class $S^*(1/2)$.

References

- H. S. Al-Amiri, Certain generalizations of prestarlike functions, J. Australian Math. Soc. (Series A) 28(1979), 325-334.
- J. Dieudonne, Recherches sur quelques problemes relatifs aux polynomes et aux fonctions bornees, Ann Ecole Norm, 48(1931), 247-358.
- I.S. Jack, Functions starlike and convex of order α, J. London Math. Soc. 3(1971), 469-474.
- Stephan Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc. 49 (1975), 109-115.
- 5. V. Singh and R.M. Goel, On the radii of convexity and starlikeness of some classes of functions, J. Math. Soc. Japan 23(1971), 323-339.
- R. Singh and S. Singh, Integrals of certain univalent functions, Proc. Amer. Math. Soc. 77 (1979), 336-340.

7. T. J. Suffridge, Some remarks on convex maps of the unit disk, Duke Math. J. 37(1970), 775-777.

Department of Mathematics, University of Papua New Guinea, Box 320, University P.O. Papua New Guinea.