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ON THE RADIUS PROBLEM OF CERTAIN
ANALYTIC FUNCTIONS

O.P. Anuja

1. Introduction

Let A denote the family of functions f which are analytic in the unit disk 4=
{z: |2|<1} and normalized such that £(0) =0=f"(0) —1. Ruscheweyh [4] intro-
duced the classes {K,} of functions f& A which satisfy the condition

(1.1) Re {D"+‘f/D"f}>%, zed,

where
Dif=z(z"f) @ /nl, n€Ny=1{0,1,2, +}.

He proved that K,,,C X, for each nEN,.
Let {R,(@)} denote the classes of functions f€A which satisfy the condition

(1.2) Re{z(D*f) | D*"f} >a, zcd

for some @ (0<a<(1). We have Ry(e)=S*(e¢) and Ri(@)=K(a) for 0<a<,
where S*(a) and K(a) are the well known classes of functions of order @ and
convex of order «, respectively. The classes R,=R,(0) were considered by Singh
and Singh [6]. It is easy to see that for each >0, R,{a) CR,(0), and for each
n>1, R,(a)CK,.

We first prove that R, (a) CR,(@), 0<a<{1, nE€N,. These inclusion relations
establish that R,(a) CS*(a) for each >0 and R,(a) ©K(a) for cach n>1. We
then deal with the problem of the radius of R,y;(@) in R,(a).

2. Radius problem

We need the following Lemma due to 1.S. Jack [3] which is also due to Su-
ffridge [7].

LEMMA 1. Let w be a nonconstant and analytic function in |z|<r<1, w(0) =
0. 1f |w| attains its maximum value on the circle |z|=r at Zo, then zygw' (zq) =
kw(zy), where k is a real number and k>1.

LEMMA 2. R,(a) CR,(a) holds for all n= N, and o 0<a<).
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Proof. Let f&R,11(«). Define w, analytic in 4 by

2D*f) 14 Qa—Dw(z)
@D Dif T 1tw(z) =

It is easy to see that w(0) =0 and w(z) # —1 for z&4. It sufficies to show that
fw(z) |<1, z&4.
Using the identity

(2.2) 2(D"f) = (n+1) D" f—nD*f,
we can rewrite (2.1) as

D¥Lf | (et D+ (rt2e—Dw(e)

@3 D7 D Aiw()
Taking the logarithmic derivative of (2.3) we get
o =D 1+ Qe-Dwl) 2(1- )z (2)
’ D 1+w(z) (1+w(@) (r+1+ r+2a—Dw(z))

We now claim that }w(z)|<1 for all z=4. For otherwise, by Lemma 1 there
exists a point zo& 4 such that g’ (2o) =kw(zy) with |w(zy)|=1 and £>1. App-
lying this result to (2.4) we obtain

2o (D"1f (zy))’ _Rl-a@)
Re{ DHLf (z) }Sa nta
<a, for each #>0.

This contradicts the hypothesis that f&R,.1(a). Hence we conclude that w(z)}
<1 for all z& 4. This completes the proof of Lemma.

In [1], Al-Amiri has obtained the radius of K,;; in K,. In view of Lemma
2, we raise the natural question of finding the largest disk 4,={z: |2|<r, 0<r
<1} so that if f&R,(a), then

Re {‘i%%—;));} >a, m>n, zEd,.

Let B denote the class of functions w(z) that are analytic in 4 and satisfy the
conditions {i) w(0)==0 and (i) |w(z)|<1 for z& 4. We need the following Le-
mma due to Singh and Goel [5].

LEMMA 3. Let P(z) = (A +lw(=))/(A-+w(2)), a=1—Ir)/Q—rY, d=1Q-Dr/
(1—7%), then for |z|=r, 0<r<1, we have

: n _ | P(z) ~lP—|1-P(2) [
Re (kP (2) +1/P(2)) P

2L(1+8) A+Da)’?~2a, Ry>R,
>V AL A QBRI
(1+r) (L+1r) » R Ry
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where Ri?=(1+0a/(1+4), Ri=a—d, k>1, ~1<I<1.
We now prove our main result in the following

THEOREM. Suppose otg(n) is the smallest positive root of the equation

(2.5) 4(n*+2n-+5) 244 (3 — 12+ n—13) 22— (1203492
+58n—15) 22 +4(2n*+Tn+3) x—4=0

lying in the interval (o, az), where a1=(n—1)% (#+22+5), ay=2/{2n+1+
(4n?+-4n+-9)1/2
If feR, (), then

2{(DPHLf())
(2.6) Re{-H i) >0
holds for
ry, Oga(_ga’0<n>
2.7 l2| <r(n, a):{
Ty, ao(n) <a<,
where
B n+1
2.8) " Ba—ant ((1—a) B—ba—2an+ (1=a)nd)}1/2
and
_ a(n®+20+5) ~(n—1)2 T
(2.9 rz"{4a(n+a’) —0~a) =1 + [2a(l—a) (—572 +8(2—a) (n+a)}1/2}

The bounds for |z| in (2.7) are sharp.
Proof. Since feR,(a), we have

where we B for all 2z in 4. Using (2.2) in (2.10), we get
(2.11) D”“f(z) _atl+rH2a—Dw(z) )
D f(z) (n+1) Q+w(2))
Taking logarithmic derivative of (2.11) we have
@12 % (DD::]{(—(ZE)ZL =—n+ @+ )P () — Wélé)l)law?(;ul o)

where P(2) =1 +lw(2))/(1+w(2)) and
{=(rn+2a—1)/(n+1). An application of Dieudonne’s Lemma [2] that
|z]*—w(2) |2

|zwl(z)“'w(z)]S—“.l‘“_lvl“z‘“—, 'LUGB, zcd
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to the second term of (2.12) yields

(2.13) Re{z%)::}rg)))’}z —(1+ll+_nl(1—1)) .

+2 7 Re{((141) A=D + D P () +1/P ()

_PP®) 1= 1=P () |
=P

We note that —1<I<1 for all a,2(0<a<1, #2>0). Since k= (n+1) (1=D+1>
1, on using Lemma 3 in (2.13), we obtain

(2.14) Re{ZQI(ED") = Qat AHD £n1=D)

‘*‘T%T{(2+ (n+1) A—0) A+D ) 172

for Ro_>_R1, and

2(D*f ()’ (n+2a—1) (2a—1)r’*+2(an+3a—2)r+ (n+1)
(2.15) Re{ Drrf(2) }> (n+1)(1+r)(1-l—(n+2a-—1):) .

for Ry<R, where a= (n+1— (n+2a—1)72)/(1—r2),

_ 1 [(ata)@mtl—(n+2a—1)r% |22
R”“n+1{ 2—a) (1-7?) “’z'}

and

R,=At1l+ (at2a—1r
a0 @

Now Ref{z(D*"1f(2))"/D*1f(2)} >0 yields the equations
(2.16) Fi(r)=Qa—-1) m+2a0—1)r?+2(an+3a~2) r+n+1=0
for Rg<R; and

.10 F(r)=[8a—3a—~1—2(0—3a)n— 1—a)n®]rt
—2[4a(nt+a) — (1—a) (W*—1) 72+ a(n®+ 2n-+5) — (n—1)2=0

{OI' R()ZRI.
The two minima given by (2.14) and (2.15) become equal to each other for
such a @(0<a<1) and 2(#>0) for which Ry=R;. This equation reduces to

(2.18) (nt2a—1) (e+20—2)r*+ (n+2a—1) (n-+6—2a) r?
—(n+1) (n+4a—6)r— (n+1) (n+2) =0.

We note that F1(0)=»+1>0, and F,(1) =2(2e2+a(2n+1) —1)<0 if alap=
2/[2n+1+ (4n*+4n+9)1/%]. Hence Fi(r) has a root in (0,1) if a<<as. Its sm-
allest root in (0, 1) for a<lay is 7. Similarly, F.(0) =a(m®+-2n+5)— (n—1)2>0 if
a> = (n—1?/(#*+2r+5), and F2(1) = —4(1—a) <0. Thus we conclude that the
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smallest root in (0,1) of Fy(r) is r; if a>a;. The transition point !for the two
cases may be obtained by eliminating r from (2.16) and (2.18) 1is the smallest
positive root ao(n) of the equation

4(n®+2n4-5) a4 (P —n?+n—13) a3 — (12n°4-9n®-58r—15) a® -- 4(2n*+ Tn+3)
—4=0,
where ag(n) lies in the interval {a;, @z). This completes the proof of the

theorem.
The functions given by

Dif(z) _ ntl1—(n+2a—1Dz
D*f(2) (n+1)(1—2)

and

Dif(x) _nta | (1—a)(1—2®)
Drf(z) n+1  (n+1) (1—22 cosf+:2)°
where cos 6 is the solution of

nt1—2(n+ta)rcos 0+ (+2a—1)" | (n4a) (n+1— @+ 2a0—1)r? }1/3
1—2r cos §+12 1 @2—a)(1—-r%

show that the results in the above Theorem are sharp.

REMARK 1. For =0, Theorem gives the radii of convexity of $*(a), the re-
sults were obtained earlier by Singh and Goel [5].

REMARK 2. For #=0, a=1/2 the above- Theorem yields =1 and r;=(24/3 —
3)1/2, Because of what we have mentioned in the Theorem, ;=1 is impossible.
Hence r;= (243 —3)!/% is the radius of convexity for the class S*(1/2).
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