SPECTRA OF THE IMAGES UNDER THE FAITHFUL *-REPRESENTATION OF L(H) ON K

HYUNG KOO CHA

1. Introduction

Let H be an arbitrary complex Hilbert space. We constructed an extension K of H by means of weakly convergent sequences in H and the Banach limit.

Let ϕ be the faithful *-representation of L(H) on K. In this note, we investigated the relations between spectra of T in L(H) and $\phi(T)$ in L(K) and we obtained the following results:

- 1) If T is a compact operator on H, then $\phi(T)$ is also a compact operator on K (Proposition 6),
- 2) $\sigma_e(\phi(T)) \subset \sigma_e(T)$ for any operator $T \in L(H)$ (Corollary 10),
- 3) For every operator $T \in L(H)$, $\sigma_{ap}(\phi(T)) = \sigma_{ap}(T) = \sigma_{p}(\phi(T))$ (Lemma 12, 13) and $\sigma_{c}(\phi(T)) = \phi$ (Theorem 15).

2. Notations and terminology

Throughout this paper, we used the following notations and terminology. The *-algebra of all bounded linear operators on H is denoted L(H).

The spectrum, the point spectrum, the compression spectrum, the approximate point spectrum and the continuous spectrum of an operator T are denoted $\sigma(T)$, $\sigma_p(T)$, $\sigma_{com}(T)$, $\sigma_{ap}(T)$ and $\sigma_c(T)$, respectively. For those spectra of T, we have the following results ([1], [2]):

- a) $\sigma_p(T) = \{\lambda \in \mathbb{C} \mid T \lambda I \text{ is a left divisor of zero in } L(H)\},$
- b) $\sigma_{com}(T) = \{ \lambda \in \mathbb{C} | T \lambda I \text{ is a right divisor of zero in } L(H) \},$
- c) $\sigma_{ap}(T) = \{\lambda \in \mathbb{C} \mid T \lambda I \text{ is not bounded below}\}\$ = $\{\lambda \in \mathbb{C} \mid \exists \varepsilon > 0 \text{ such that } (T - \lambda I)^* (T - \lambda I) \ge \varepsilon I\}.$

We denoted by LIM the Banach limit defined for bounded sequences $\{x_n\}$ of complex numbers, which satisfies the following properties,

- a) LIM $x_n = \text{LIM } x_{n+1}$
- b) LIM $(\alpha x_n + \beta y_n) = \alpha \text{LIM } x_n + \beta \text{LIM } y_n$, for all $\alpha, \beta \in \mathbb{C}$,
- c) LIM $x_n \ge 0$ when $x_n \ge 0$ for all n,
- d) LIM $x_n = \lim x_n$ whenever $\{x_n\}$ is convergent,

- e) $\lim \inf x_n \le \lim x_n \le \lim \sup x_n$ when $\{x_n\}$ is real sequence,
- f) LIM $(x_n^*) = (\text{LIM } x_n)^* ([1], [5], [7])$

3. Construction of K

Let \mathcal{B} be the set of all weakly convergent sequences $s = \{x_n\}$ in H. If $s = \{x_n\}$ and $t = \{y_n\}$, we write s = t in case $x_n = y_n$ for all n. The set \mathcal{B} is clearly a vector space for the operations

$$s+t=\{x_n+y_n\}$$
 and $\lambda s=\{\lambda x_n\}$ for all $\lambda \in C$.

Let $s = \{x_n\}$ and $t = \{y_n\}$ be the elements of \mathcal{B} . In a Hilbert space, since every weakly convergent sequence is bounded in H ([9]), it is permissible to define

$$\psi(s,t) = \text{LIM} (x_n | y_n).$$

Evidently, ϕ is a positive symmetric sesquilinear form on \mathcal{E} and $|\phi(s,t)|^2 \le \phi(s,s)$ $|\phi(t,t)| \in \mathcal{E}$

Let
$$\mathcal{M} = \{s \mid \psi(s, s) = 0\} = \{s \mid \psi(s, t) = 0 \text{ for all } t \in \mathcal{B}\}.$$

Then \mathcal{U} is clearly a linear subspace of \mathcal{E} . Thus, the quotient vector space $\mathcal{D} = \mathcal{E}/\mathcal{U}$ becomes an inner product space on defining

$$(s'|t') = \phi(s,t),$$

where s' and t' are the cosets $s+\mathcal{H}$ and $t+\mathcal{H}$, respectively.

If x is in H, we write $\{x\}$ for the sequence all of whose terms are x and x' for the coset $\{x\} + \mathcal{U}$. Obviously, (x'|y') = (x|y) and $x \longrightarrow x'$ is an isometric linear mapping of H onto a closed linear subspace K' of \mathcal{D} .

Let K be the completion of \mathcal{D} . Thus, $K' \subset \mathcal{D} \subset K$ and \mathcal{D} is a dense linear subspace of K. In this case, \mathcal{E} is invariant under T for each $T \in L(H)$. For, let s be an arbitrary element in \mathcal{E} and let $s = \{x_n\}$.

By the consruction of \mathcal{B} , $(x_n|y) \longrightarrow (x|y)$ for all $y \in H$, whence $(Tx_n|y) = (x_n|y) \longrightarrow (x|T^*y) \longrightarrow (x|T^*y) = (Tx|y)$. Therefore, $\{Tx_n\}$ is the weakly convergent sequence.

4. A *-represention L(H) on K

In the remark of the preceding section, since we knew that if $s \in \mathcal{E}$, then $Ts \in \mathcal{E}$ for each operator $T \in L(H)$, we can determines an operator $\phi(T) \in L(K)$ for any $T \in L(H)$ as follows.

Defining $T_0s = \{Tx_n\}$ for each $s = \{x_n\} \in \mathcal{B}$, we have a linear mapping $T_0: \mathcal{B} = \mathcal{B}$ such that $\psi(T_0s, T_0s) \leq ||T||^2 \psi(s, s)$. In particular, if s is in \mathcal{B} , then T_0s is also in \mathcal{B} . It follows that $\{x_n\}' \longrightarrow \{Tx_n\}'$ is a well-defined linear mapping of \mathcal{B} into \mathcal{B} , which we denote $\phi(T)$. Thus, $\phi(T)s' = (T_0s)'$ and the inequality $(\phi(T)u)\phi(T)u) \leq ||T||^2(u|u)$ for each u in \mathcal{B} shows that $\phi(T)$ is continuous. In particular, since $\phi(T)\{x\}' = (Tx)'$ for any x in H, it is clear that $||\phi(T)|| \geq ||T||$.

Thus, we have $\|\phi(T)\| = \|T\|$.

5. Main results

PROPOSITION 1. The mapping $\phi: L(H) \longrightarrow L(K)$ is a faithful *-representation of L(H) on K such that $\phi(I)$ is the identity on K.

Proof. Let $s = \{x_n\} \in \mathcal{B}$ and let $s' = s + \mathcal{H}$. Then

$$\phi(S+T)s' = ((S+T)_0s)' = \{(S+T)x_n\}'$$

$$= \{Sx_n + Tx_n\}' = \{Sx_n\}' + \{Tx_n\}'$$

$$= (S_0s)' + (T_0s)' = \phi(S)s' + \phi(T)s'$$

$$= (\phi(S) + \phi(T))s'$$

Hence, we have $\phi(S+T) = \phi(S) + \phi(T)$.

Let
$$s = \{x_n\} \in \mathcal{B}$$
 and $s' = s + \mathcal{H}$. Then $\phi(ST)s' = ((ST)_0s)' = \{STx_n\}' = \{S(Tx_n)\}' = S_0\{Tx_n\}\}' = \phi(S)\{Tx_n\}' = \phi(S)(T_0s)' = \phi(S)\phi(T)s'.$

Hence, we have $\phi(ST) = \phi(S)\phi(T)$.

For all $s' = \{x_n\} + \mathcal{U}$ and $t' = \{Y_n\} + \mathcal{U}$ belong to \mathcal{D} ,

$$(s'|\phi(T)^*t') = (\phi(T)s'|t') = LIM(Tx_n|y_n) = LIM(x_n|T^*y_n) = (s'|\phi(T^*)y_n)$$

Since s' and t' are arbitrary, we have $\phi(T^*) = \phi(T)^*$.

And we have $\phi(I)$ is the identity on K, for, $\phi(I)s' = (I_0s)' = \{Ix_n\}' = \{x_n\}' = s' \text{ for each } s' \in \mathcal{D}$. Obviously, ϕ is injective.

It follows from the above results that ϕ is a faithful *-representation of L(H) on K with identity $\phi(I)$.

PROPOSITION 2. For each operators $T \in L(H)$,

- (a) If T is invertible on H, then $\phi(T)$ is invertible on K and $\phi(T^{-1}) = \phi(T)^{-1}$.
- (b) For any weakly convergent sequence $\{x_n\}$ in H, there exists a vector $u \in K$ such that

$$\|\phi(T)u\|^2 = LIM\|Tx_n\|^2$$
, for all $T \in L(H)$.

Proof. Suppose that T is invertible on H. Then

$$s' = \{TT^{-1}x_n\}' = \phi(T)\phi(T^{-1})s'$$
 and

$$s' = \{T^{-1}Tx_n\}' = (T^{-1})\phi(T)s' \text{ for each } s' \in \mathcal{D}.$$

Thus, we have $\phi(I) = \phi(T)\phi(T^{-1}) = \phi(T^{-1})\phi(T)$. By the uniqueness of inverse, $\phi(T^{-1}) = \phi(T)^{-1}$.

The second is clear from the definition.

From Proposition 2, we have the following result.

Corpollary 3. $\sigma(\phi(T)) = \sigma(T)$ for all operators $T \in L(H)$.

PRPOOSITION 4. If M is a spectral set for T, then M is also a spectral set for $\phi(T)$.

Proof. Suppose that M is a spectral set for T. Then by the definition of spectral set for T, $\sigma(T) \subset M$ and $||f(T)|| \le ||f||_M = \sup \{|f(\lambda)| : \lambda \in M\}$ for all $f \in C(t; M)$ ([2]).

Since $\phi(f(T)) = f(\phi(T))$ for all $f \in C(t; M)$,

$$||f(\phi(T))|| = ||\phi(f(T))||$$

 $\leq ||\phi|| ||f(T)||$
 $= ||f(T)||$
 $\leq ||f||_{M}.$

Therefore, M is a spectral set for $\phi(T)$.

PROPOSITION 5. $W(T)^- = W(\phi(T))^-$, where $W(T)^-$ is the closure of the numerical range of T.

Proof. For each element $\alpha \in W(T)^-$, there exists a sequence $\{x_n\}$ of vectors x_n in H with $||x_n|| = 1$ such that $(Tx_n|x_n) \longrightarrow \alpha$ if and only if $(\phi(T)x_n'|x_n') \longrightarrow \alpha$, since $||x_n|| = ||x_n'||$ and $(Tx_n|x_n) = (\phi(T)x_n'|x_n')$, where $x_n' = \{x_n\} + \mathcal{U}$ for all n. Therefore, $\alpha \in W(\phi(T))^-$.

PROPOSITION 6. If T is a compact operator on H, then $\phi(T)$ is also a compact operator on K.

Proof. Let $s_n' = s_n + \mathcal{H}$ be a bounded sequence in K with $s_n = \{x_m, n\}$. Then there exists $x_n \in H$ such that x_n is the weak limit of the sequence $\{x_{m,n}\}$.

Since $||x_n|| \le \lim_{n \to \infty} \inf ||x_{m,n}||$ ([9]), the sequence $\{x_n\}$ is a bounded sequence.

Thus, there is a weakly convergent subsequence $\{x_{ni}\}$ of the sequence $\{x_n\}$ and since T is the compact operator, we have $||Tx_{m,n}-Tx_n|| \longrightarrow 0$ as $m \longrightarrow \infty$.

Let $\{x_{m,n_i}\}$ be the sequence which have the weak limit x_{n_i} and let $s = \{x_{n_i}\}$. Then,

$$\begin{aligned} \|\phi(T)(s_{n_i})' - \phi(T)s'\|^2 &= \|\phi(T)(s_{n_i}' - s')\|^2 \\ &= \|\phi(T)(x_{m,n_i} - x_{n_i})'\|^2 \end{aligned}$$

$$= LIM ||T(x_{m,n_i} - x_{n_i})||^2$$

$$= LIM ||Tx_{m,n_i} - Tx_{n_i}||^2$$

$$= 0.$$

Hence $\phi(T)$ is a compact operator on K.

The set of all compact operators on H is denoted K(H). Let π be the natural quotient map of L(H) onto the Calkin algebra L(H)/K(H). The essentially normal operator is the operator $T \in L(H)$ such that $\pi(T)$ is normal and the essentially unitary operator is the operator $T \in L(H)$ such that $\pi(T)$ is unitary.

COROLLARY 7. If T is an essentially normal operator on H, then $\phi(T)$ is an essentially normal operator on K.

Proof. Suppose T is an essentially normal operator. Then T^*T-TT^* is the compact operator and so by Proposition 6, $\phi(T^*)\phi(T)-\phi(T)\phi(T^*)$ is the compact operator in K. Hence $\phi(T)$ is an essentially normal operator in K.

COROLLARY 8. If T is an essentially unitary operator on H, then $\phi(T)$ is an essentially unitary operator on K.

Proof. Suppose T is an essentially unitary operator. Then T^*T-I is the compact operator and by Proposition 6, $\phi(T^*)\phi(T)-\phi(I)$ is the compact operator on K. Hence $\phi(T)$ is an essentially unitary operator on K.

PROPOSITION 9. If T is a Fredholm operator on K, then $\phi(T)$ is a Fredholm operator on K.

Proof. Suppose that T is a Fredholm operator. Then since $\pi(T)$ is an invertible element in L(H)/K(H), there exists an operator $S \in L(H)$ such that.

$$TS = I + K_1$$
 and $ST = I + K_2$

where K_1 and K_2 are elements in K(H). By Propositions 1 and 6,

$$\phi(T)\phi(S) = \phi(I) + \phi(K_1)$$
 and $\phi(S)\phi(T) = \phi(I) + \phi(K_2)$

Hence $\pi \phi(T)$ is an invertible element in L(K)/K(K).

We have the following immediate consequence:

COROLLARY 10. $\sigma_e(\phi(T)) \subset \sigma_e(T)$ for any operator $T \in L(H)$, where $\sigma_e(T)$ is the essentially spectrum of T and $\sigma_e(T) = \sigma(\pi(T))$.

Suppose $T \ge 0$, that is, $(Tx|x) \ge 0$ for all x in H. If $u = \{x_n\}'$ is an element in \mathcal{D} , then $(Tx_n|x_n) \ge 0$ for all n. Thus,

$$(\phi(T)u|u) = \text{LIM}(Tx_n|x_n) \ge 0$$

Therefore,

$$(\phi(T)v|v) \ge 0$$
 for all v in K .

By the above result, we have the following result:

PROPOSITION 11. The operator T is positive if and only if $\phi(T)$ is positive.

LEMMA 12. If T is an operator on H, then $\sigma_{ab}(\phi(T)) = \sigma_{ab}(T)$.

Proof. A complex number λ does not belong to $\sigma_{ap}(T)$ if and only if there exists a positive number ε such that $(T-\lambda I)^*(T-\lambda I) \geq \varepsilon I$ if and only if $(\phi(T)-\lambda\phi(I))^*(\phi(T)-\lambda\phi(I)) \geq \varepsilon\phi(I)$. So we have the desired equality.

LEMMA 13. If T is an operator in L(H), then

$$\sigma_{ap}(T) = \sigma_p(\phi(T)).$$

Proof. The relations $\sigma_p(\phi(T)) \subset \sigma_{ap}(\phi(T)) = \sigma_{ap}(T)$ have already been known. Conversely, a complex number λ belong to $\sigma_{ap}(T)$ if and only if there exists a sequence $\{x_n\}$ of vectors x_n in H with $||x_n||=1$ such that $||(T-\lambda I)x_n|| \longrightarrow 0$. Since $\{x_n\}$ is the bounded sequence, there exists a weakly convergent subsequence $\{x_{ni}\}$ of $\{x_n\}$. Let u be the subsequence $\{x_{ni}\}$ of $\{x_n\}$. Then $u'=u+\mathcal{N} \in K$ and ||u'||=1. Thus,

$$\begin{split} \|\phi(T)u' - \lambda\phi(I)u'\|^2 &= ((\phi(T) - \lambda\phi(I))u') |(\phi(T) - \lambda\phi(I))u') \\ &= (((T - \lambda I)_0 u)') |((T - \lambda I)_0 u)') \\ &= (\{(T - \lambda I)x_{n_i}\}') \{(T - \lambda I)x_{n_i}\}') \\ &= \text{LIM}((T - \lambda I)x_{n_i}| (T - \lambda I)x_{n_i}) \\ &= \text{LIM}\|(T - \lambda I)x_{n_i}\| \\ &= 0 \end{split}$$

Hence we have $\phi(T)u' = \lambda u'$ and so $\lambda \in \sigma_p(\phi(T))$.

LEMMA 14. $\sigma_{com}(T) \subset \sigma_{com}(\phi(T))$ for any operator $T \in L(H)$.

Proof. Suppose that $\lambda \in \sigma_{com}(T)$. Since $T - \lambda I$ is a right divisor of zero in L(H), there exists an operator $S \in L(H)$ such that $S(T - \lambda I) = 0$. Thus,

$$\phi(S)(\phi(T) - \lambda\phi(I)) = \phi(S(T - \lambda I)) = 0.$$

Therefore, we have $\lambda \in \sigma_{com}(\phi(T))$.

THEOREM 15. For every operator $T \in L(H)$, $\sigma_c(\phi(T)) = \phi$.

Proof.
$$\sigma_{\epsilon}(\phi(T)) = \sigma(\phi(T)) - (\sigma_{p}(\phi(T)) \cup \sigma_{com}(\phi(T)))$$

 $\subset \sigma(T) - (\sigma_{ap}(T) \cup \sigma_{com}(T)) = \phi.$

References

- 1. S.K. Berberian, Approximate proper vectors, Proc. Amer. Math. Soc. 13 (1962), 111-114.
- 2. S.K. Berberian, Lectures in functional analysis and operator theory, Springer-Verlag, N.Y., 1974.
- Ronald, G. Douglas, Banach algebra techniques in operator theory, Academic Press, N.Y. and London, 1972.
- 4. H. R. Dowson, Spectral theory of linear operators, Academic Press Inc., London, 1978.
- N. Dunffrd, J.T. Schwarz, Linear operator I, Interscience Pub. Inc., N. Y., 1964.
- 6. R. Lange, Sets essentially unitary operators, Trans. Amer. Math. Soc. 281 (1984) 65-75.
- 7. R. Larsen, Functional analysis, Marcel Dekker Inc., N.Y., 1973.
- 8. J.G. Stampfli, Compact perturbations, normal eigenvalues and a problem salinas, J. London Math. Soc. (2) 9(1974) 165-175.
- 9. J. Weidmann, Linear operators in Hilbert spaces, Springer-Verlag, N.Y., 1980.

Hanyang University Seoul 133, Korea