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SPECTRA OF THE IMAGES UNDER
THE FAITHFUL *-REPRESENTATION OF L(H) ON K

Hyunc Koo Cna

1. Introduction

Let H be an arbitrary complex Hilbert space. We constructed an extension K
of H by means of weakly convergent sequences in H and the Banach limit.

Let ¢ be the faithful *-representation of L(H) on K. In this note, we inve-
stigated the relations between spectra of T in L(H) and ¢(7T) in L(K) and we
obtained the following results:

1) If T is a compact operator on H, then ¢(7T) is also a compact operator on
K (Proposition 6),

2) 0.(¢(T)) Co (T) for any operator T L(H) (Corollary 10),

3) For every operator TEL(H), 0,,(¢(T)) =0,,(T)=0,(¢(T)) (Lemma 12,
13) and ¢.(¢(T))=¢ (Theorem 15).

2. Notations and terminology

Throughout this paper, we used the following notations and terminology. The
*-algebra of all bounded linear operators on H is denoted L (H).

The spectrum, the point spectrum, the compression spectrum, the approximate
point spectrum and the continuous spectrum of an operator T are denoted o(T),
6p(T), 0eon(T), 05(T) and o,(T), respectively. For those spectra of T, we
have the following results ([1],[2]):

a) 0,(T)={AcC|T—2Al is a left divisor of zero in L(H)},
b) Oem(T) ={A&€C|T—2I is a right divisor of zero in L(H)},
¢) 045(T)={Ac€C| T—Al is not bounded below}
={A&C|#e>0 such that (T—AD*(T—2A) >el}.
We denoted by LIM the Banach limit defined for bounded sequences {z,} of
complex numbers, which satisfies the following properties,
a) LIM z,=LIM =z,
b) LIM (ax,+By.) =aLIM x,-+-8LIM y,, for all a, B=C,
¢) LIM 2,>0 when 2,>0 for all »,
d) LIM 2,=lim x, whenever {z,} is convergent,
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e) lim inf x,<LIM z,<lim sup a, when {2,} is real sequence,

) LIM(2,*) = (LIM z,)* ([1], 5], [7])

3. Construction of K

Let & be the set of all weakly convergent sequences s= {z,} in H. If s 1)
and ¢= {y,}, we write s==¢ in case z,=y, for all n. The set £ is clearly a vec-
tor space for the operations

s+t={x,4y,) and As = {Az,} for all ieC.

Let s={z,} and ¢={y,} be the elements of &. In a Hilbert space, since every
weakly convergent sequence is bounded in H ([9]), it is permissible to define

¢(S, t) =LIM (2, Iyn) .

Evidently, ¢ is a positive symmetric sesquilinear form on £ and (s, ) |2< ¢
(s,5) ¢, 1) ([2]).

Let #={s|¢(s,5) =0} ={s|¢(5,2) =0 for all reA}.
Then % is clearly a linear subspace of ®£. Thus, the quotient vector space =
®/% becomes an inner product space on definining

(1) =4(s,0),

where s' and ¢ are the cosets s--% and ¢1-%, respectively.

If z is in H, we write {2} for the sequence all of whose terms are z and &
for the coset {z} +%. Obviously, (2'|y) =(z|y) and z— >2' is an isometric lin-
car mapping of H onto a closed linear subspace K’ of 9.

Let X be the completion of 9. Thus, K'CPCK and 9 is a dense linear su-
bspace of K. In this case, & is invariant under T for each TeL(H). Yor, let s
be an arbitrary element in & and let s={z,].

By the consruction of &, (z,ly)—>(x|y) for all y& H, whence (Ta,ly) = (x,
| T*y) —> (x| T*y) = (Tx|y). Therefore, {Tx,} is the weakly convergent seq-
uence.

4. A *-represention L(H) on K

In the remark of the preceding section, since we knew that if sG&, then T
&4& for each operator TG L{(H), we can determines an operator ¢(T) & L(K)
for any T€L(H) as follows.

Defining Tys={Tx,} for each s={z,} &, we have a linear mapping T, : &
——>& such that ¢(Tos, Tos) <|| T1|%)(s,s). In particular, if s is in #, then Tos
is also in #. It follows that {z,}’—> (T}’ is a well-defined linear mapping of
P into P, which we denote ¢(T). Thus, ¢(T)s = (Tss)’ and the inequality
@ (Tulg(T)w) <|IT|[*(u]u) for cach u in 9P shows that ¢(T) is continuous. In
particular, since ¢(7T) {a} == (T)’ for any 2 in H, it is clear that e =NTI.
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Thus, we have S (THI=NTI.

5. Main results

PROPOSITION 1. The mapping ¢ : L(H)—>L(K) is a faithful *—representation
of L(H) on K such that &(I) is the identity on K.

Proof. Let s={z,} &€& and let §' =s--7. Then

S+ T = ((S+T)es) = {(S+ T)a,}’
= {8z, + Tas}' = {Sz} + (T}’
= (808) + (To8) =¢(S)s" -+ ¢(T) s
=($(S) +¢(T))s

Hence, we have ¢(S+7) =0(S8)+o(T).

Let s={z,} €R and s =s+%. Then
ST =((ST)os) = {STn) = {S(Txn)}’
:SO {TI,,} ) ’ :¢ (S) {T-Tn} ’
= (S) (Tos)’
=6(S)g(T)s'.
Hence, we have ¢(ST)=¢(S)¢ (7).
For all ¥’ ={z,} +% and +' ={Y,} 1% belong to 9,
G (T)*) = ($(T)s' |¢')
=LIM(Tz,|y,)
=LIM(z,| T*y,)
=G 1Ty,
Since s' and ¢’ are arbitrary, we have S(T*)=¢(T)*,

And we have ¢(I) is the identity on X, for, ¢(I)s'=ys)" = (I}’ = {2} ==
s" for each s'&9. Obviously, ¢ 1s injective.

It follows from the above results that ¢ is a faithful *-representation of L(H)
on K with identity ¢(7).

PROPOSITION 2. For each operators TeL(H),
(@) If T is invertible on H, then $(T) is invertible on K and ST =
e(T)~1.

(b) For any weakly convergent sequence {x,} in H, there exists q vector uc K
such that

ifgb(T)uHZ:LlMHTx,,HJ, Jor all TeL(H).
Proof. Suppose that T is invertible on H. Then
s':{TT‘lx,,}':¢(T)¢(T—1)s’ and
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§={T 1Tz} =(TH¢(T)s for each s €.

Thus, we have ¢(I)=¢(T)¢(TH)=¢(T D ¢(T). By the uniqueness of inverse,
(T H=9(T).

The second is clear from the definition.
From Proposition 2, we have the following result.
CORPOLLARY 3. a{(¢{(T))=a(T) for all operators T&L(H).

PRPOOSITION 4. If M is a spectral set for T, then M is also a spectral set for
(7).

Proof. Suppose that M is a spectral set for T. Then by the definition of sp-
ectral set for T, ¢(T)CM and ||f(TH|<|Iflin=sup {|f(D) | : &M} for all fe
C@; M)y ([2D.

Since ¢(f(T)) =f(p(T)) for all f&C; M),

1A (TN=1lg (ST
<[l 1A ()]
=[Sl

|| film

Therefore, M is a spectral set for ¢(T).

PROPOSITION 5. W{(T)"=W(d(T))~, where W(T)~ is the closure of the nu-

merical range of T.

Proof. For each element ac W(T)™, there exists a sequence {z,} of vectors
z, in H with |lz,||=1 such that (Tx,]z,) —>a if and only if (¢(T)z, | x,/) —>
a, since l|z,l=|lz, 1 and (Tx,lzn) = (@(T)x, |x'), where x,/ = {x,} +% for all
n. Therefore, ac W(@(T)) .

PROPOSITION 6. If T is a compact operator on H, then ¢(T) is also a comp-
act operator on K.

Proof. Let s, =s,-+% be a bounded sequence in K with s,= {2, »}. Then there
exists x,&H such that z, is the weak limit of the sequence {z,, ,}-
Since |lz,||<lim inf ||z, ] (C9]), the sequence {x,} is a bounded sequence.

Thus, there is a weakly convergent subsequence {z,]} of the sequence {z,} and since
T is the compact operator, we have || Tz, ,— Tx,l|—>0 as m—>c0,

Let {z,, ,] be the sequence which have the weak limit x,, and let s={z,]}.
Then,

o (T) (s2)" =@ (TYS 2= 19(T) (s —5)|®
= H{D'(YV) {xm, m—-rni} ! l\“’
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=LIM]| T(xm.ni—xn;) II?
= LIM|| T, w;— Tzp,|?
=0.

Hence ¢(T) is a compact operator on K.

The set of all compact operators on H is denoted K(H). Let z be the natural
quotient map of L(H) onto the Calkin algebra L(H)/K(H). The essentially
normal operator is the operator T€L(H) such that z(7T) is normal and the es-
sentially unitary operator is the operator T€L(H) such that z(T) is unitary.

COROLLARY 7. If T is an essentially normal operator on H, then ¢(T) is an
essentially normal operator on K.

Proof. Suppose T is an essentially normal operator. Then T*T—TT* is the
compact operator and so by Proposition 6, ¢(T*)¢(T)—¢(T)(T*) is the
compact operator in K. Hence ¢(7") is an essentially normal operator in K.

COROLLARY 8. If T is an essentially unitary operator on H, then ¢(T) is an
essentially unitary operator on K.

Proof. Suppose T is an essentially unitary operator. Then T*T—I is the co-
mpact operator and by Proposition 6, ¢(T*)¢(T)—$(I) is the compact operator
on K. Hence ¢(T) is an essentially unitary operator on K.

PROPOSITION 9. If T is a Fredholm operator on K, then o(T) is a Fredholm
operator on K.

Proof. Suppose that T is a Fredholm operator. Then since z(T) is an inver-
tible element in L(H)/K(H), there exists an operator SEL(H) such that.

TS=I1+K, and ST=I+K,
where K; and K, are elements in K(H). By Propositions 1 and 6,
$(T)$(S) =¢(I) +¢(Ky) and ¢(S)¢(T) =¢ ) +¢(Ky)
Hence 7¢(T) is an invertible element in L(K)/K(K).

We have the following immediate conscquence:

COROLLARY 10. 0.(¢(T)) Co,(T) for any operator TEL(H), where 0. (T) is
the essentially spectrum of T and ¢.(T)=0(=(T)).

Suppose T>0, that is, (Tx}x)>0 for all = in H. If u= {z,}’ is an element
in 9, then (Tx,|z,) >0 for all n. Thus,

(@(Tu|u) =LIM(Tz,|2,) >0
Therefore,
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@(T)v|v) >0 for all v in K.

By the above result, we have the following result:
PROPOSITION 11. The operator T is positive if and only if &(T) is positive.
LEMMA 12. If T is an operator on H, then 0ap((T)) =0,,(T).

Proof. A complex number 4 does not belong to 6.(T) if and only if there
exists a positive number ¢ such that (7—AI)*(T—2AI)>el if and only if (¢(T)
—A6(ID)*(G(T) —26 (1)) =ep(I). So we have the desired equality.

LEMMA 13. If T is an operator in L(H), then
0up(T) =0,(3(T)).

Proof. The relations 6,(¢(T)) Coap($(T)) =0,4(T) have already been known.

Conversely, a complex number 2 belong to 0,,(T) if and only if there exists
a sequence {z,} of vectors z, in H with |lz,[[=1 such that ||(T—2I)z,||—>0.
Since {z,} is the bounded sequence, there exists a weakly convergent subsequence
{xs) of {r,}. Let u be the subsegence {z,} of {z,}. Then # =u+#cK and
lle'[|=1. Thus,

1o (T)u' =g (' |12= (((T) =g ()’ | ($(T) =g (I))u')
=(((T—=A) ) | ((T—2) g0)")
=({(T—2D z,}' | {(T—2D) z,,}")
=LIM((T—2A) x| (T—AI) 2,,)
=LIMI(T—2I) xni”

Hence we have ¢(T)u' =2u" and so A€a,(¢(T)).
LEMMA 14. 0oom(T) COron(@(T)) for any operator T<L (H).

Proof. Suppose that A&d,,,(T). Since T—Al is a right divisor of zero in
L(H), there exists an operator SeL (H) such that S(T—2AI)=0. Thus,

$(8) ($(T) — 26 (1)) =¢(S(T—AI)) =0.
Therefore, we have €., (¢(T)).
THEOREM 15. For every operator TeL(H), o.(6(T))=¢.

Proof. 0.(¢(T))=0($(T))~(6,($(T)) Ubrom($(T)))
CO—(T) —(O'ap(T) Ugcom(T)) :¢'
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