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OPTIMAL BOUNDARY CONTROL PROBLEMS 
FOR SYMMETRIC HYPERBOLIC SYSTEMS 
WITH CHARACTERISTIC BOUNDARIES.

Sung Kag Chang

1. Introduction.
A number of authors [C. 1,C. 2,L. 1,L. 2,L. 3,V. 1] known 

to us have studied optimal boundary control problems 
for hyperbolic systems in several variables with noncha­
racteristic boundaries.

JBut many 土虫起ortEmt 卫rWsMms, for instance, Maxwell 
equations and linearized shallow water equations, have 
characteristic boundary conditions.

In this paper, we study control problems for hyperbo­
lic systems with characteristic boundaries, which is 
different from others.

Let Q be an open domain in Rm with smooth boundary 
r for an integer %〉1. We consider a first order differ­
ential operator of the form

(1.1) A(x,3/3x) = S A Ax) +C(x) for x&ox j

where &(%) and C(x) are (l+n) X (Z+^) smooth. sym­

metric matrix valued functions on 5, I and n are given 
positive integers.

We also require that Aj(%) and C(x) are constant for 

sufficiently lar흥e k이 in Q.
We assume the uniform characteristic boundary^ that is,
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(1.2) the normal matrix Na(%) = Z 4(%)勺(％) have 

constant rank n for all 乂where are the inw
ard normals to the boundary r at x in r.

Without loss of generality, we may assume that NA(x) 
have k negative real eigenvalues and Qn—k) positive real 
eigenvalues.
We now consider a mixed initial boundary value prob 

lem as

(L3) I ■槊_=/4(多，d/dx)y+h on [0, Q—Q
I ot
\ on [0, TJX 广=Z
I 贝0)2 on Q,
0(%) i오 a boundary operator

the null space of the normal matrix NA (x) at AG 
乙2(0), /eL2(O)and徴任中初声).

For the simplicity, we transform our problem into one 
•on a half-space by using local coordinate changes and a 
partition of unity. Thus we may assume without loss 
of generality that

(1.4) Q= [xuRm Mi〉아 and r~{x^Rm 俱i=0}. 
Then the normal matrix Na(x)^=Ai(x) for x in r. 
By smooth change of coordinates, we may assume

(1.5) Ai = 0 0 0'
0 ^4； 0

0 0出/

An == An 0

0

where A； is a negative-definite kxk matrix and At is 
positive-definite (n—k)X(n~k) matrix.

C오) 乙2(Q)= 乙2(Q；R+) 乙2(0) = L2(q;R5) and 乙2(君) = 

L2g갼).
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Henceforth, we assume (1.4) and (1.5) without loss 
of generality.
For x^Rmy y^Rl+n9 we partition x and y as 
^=(%,：y・J+)Tand34 = (：y・j+)T where 妒=(%跆 ....

外=(3% ......yiY,:人=(力h, ......... yi+k)T and :y+=(：力h+i,
......卩危)丁.

In order to be well-posed for the problem (1.3), it is 
well known that the boundary condition /3(%)夕=霧 can be 
written in the following form；

(1.6) 外=N(%).y++” for
where N(x) is a smooth kx matrix valued function 
on. r which is constant for sufficiently large |씨 on. r 
(see CM. 口).

We partition matrices A3(x) as / A；11 A121 where A；11
I A;21 4产 J

and Aj22 are I X I and n X n square matrices respectively 
for 顶=2,...... , w, and A^2= (Aj21)7 is I X n matrix.

m rn
Let us denote Wu(w) = XZ： A；11 iw,, 0知(湖)=匸 A12 j=2 J=2m

iw3 and 卩焰(汕)=〉二 Ay22 iw3 for z〃=(汐2,…勿/任欧飞 z妇£0, 7=2
We assume for that
(L7) the matrix W(汕)has distinct eigenvalues (pure 

imaginary) for every w^Rm'l9 w^Q.
We assume, without detail, other appropriate condit­

ions for the problem (1.3) to be well-posed in the Kreiss5 
sense (we refer to [_M. 口)

Under appropriate assumptions [M. 1], we have the 
following theorem.

Theorem 1. For any T>0, fWBQ" and uG
U(z), the problem (1.3) has a unique strong solution y 
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in L2(Q) and unique strong solution y(i) in L2(^) at 
each time £U[0,T].

Moreover yn has strong boundary value in L2(2) and 
the following inequality holds ；

(1.8) |夕(£)|£2+|이서-|3시2，$아：|刃@+|씨9+|씨2日, 

where C is a constant independent on /, h and u.

Remark. yQ in theorem 1 may not have boundary value 
at all in L흐 (Z).

We are interested in boundary control problem. Hence 
here after it may be assumed that f and h are fixed, 
moreover let h—0, and C(x)=0.
華如丑毎 are ia.a positifflk to iomulate optimal control 

problem for the system (1.3) as follows.
Suppose that F and G be given bounded, self-adjoint 

and positive-definite linear operators on L2(fi).
A quadratic functional cost J is defined as

(1.9) 刀0) = |씨으+(力巧丄+3(7) Gym^

for 戏uZ/하(Z) and correpponding solution y to the system
(1.3).

(C.P) Our problem is to minimize the cost J(u) over 
姮 乙흐 (Z).

Our main goal is to show that an optimal control uQ 
exists in L2(S) and it can. be synthesized as a feedback 
form, that is,

泗(£)=」辺(£)3对(#) for a.e. T] 

where B is an unbounded linear operator on L2(Q) into 
Z2(r), P(f) is a Riccati operator on L2(Q) and yQ is the 
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optimal trajectory corresponding to uQ.
We state the main results in the next section and 

sketch briefly their proofs in section 3.

2. Main Results
We introduce an operator A on. L2(fl) as

(2.1) Ay=A(x9 d/dx)y for y^D(A)

where the domain D(A) — (y^L2(Q)\Ay^L2(Q) and 夕_= 

Ny+ on r｝. Then it is easily seen that A is closed and 
densely defined on furthermore it generates a
strongly continuous semigroup S(O on L2(Q).

-Remark. The of A is given by

(2.2) 』4*y= —Z A(^) -名夕一Z(£— &(%)W
j=i

for where the domain
D(A*) = ｛乙 2(Q) |&3白乙2(。)

and y+= — (An yiNTAny. on 广｝.

It is also well-known that A* generates the adjoint 
semigroup S우(t) of S(t) on L2(Q).

In order to irttroduce a Dirichlet map which ext­
ends boundary functions to interior functions in a certain 
way, we consider the following boundary value problem：

(2.3) d/dx)y~Ky on Q
\y.—Ny^ +% 에 r

for where K is a large constant.
Then we have the following lemma.

Lemma 2. 1.
The problem (2.3) is well-posed for a sufficiently large 
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number K〉0・ Moreover, the following inequality holds:

(2.4) 이씨 r for u^L2(F)

where C is a constant independent on u.
Once we have chosen K so that (2. 3) is well-posed, 

we fix K・ For the simplicity, we may assume K=0 (If 
we simply translate A by K)

From lemma 2.1, we define the Dirichlet map D as：

Du~y if y is the solution to (2.3).

Then is a bounded linear operator on L2(r) into 乙히(0). 
Now have the following trace operator.

Lemma 2. 2.

D*Ay=Any.\r for y^D(A^)・

Let us define an operator L on L2(2*) as
(2.5) (Lu)(t)=A f S(t-s) D 次s)ds for

Jo
and which is a subspace of 乙传).

We have a semigroup representation of the solutions 
to the mixed problem(l.3).

Theorem 2.3- (Semigroup Representation).
(1) the operator L is a bounded linear operator on 13 

(Z) into C([<9, T]；L2 (Q)),
(2) the solution y to the problem (1.3) is given by

(2.6) y (t) = S0) f - Q或)(t) for OWtWT.

From theorem 2.3, it is easily seen that our control 
problem (C. P) has a unique optimal control u° in L할(£、) 

by standard argument (see [C. 1, L. 1]).
Let us denote ^(t, s) the evolution operator which 
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describes the evolution of the optimal trajectory yQ with 
initial time s,0至(see [G 1,乙.口). Then we have 
the following synthesis of optimal control uQ.

Theorem 2.4. (Feedback synthesis)
The optimal control can be written in the form 

g(£)=D오A후]?(£加(£) a.e.tU[0, 7、] where P(Z) is a bou­
nded self-adjoint and positive-definite operator on L2(Q) 
which satisfies the following Riccati equation：

(R. E・ 1) for x, y^L2(Q) and 0</< T,
(P0)%，9，)a =j： (、e(s,t、)x、F e(s,t)：y)a ds

+ C (D*A*P(s) ©(s,Z)M,Z)*/*r(s)0(s,Z)3Br ds

+ (0(T,t)x.G

For a moment, we assume that
(2.7) F and G map L2(fl) into D(A*).
We denote the class of one parameter families of 

operators P(t) on L2(Q) which are self-adjoint, positive- 
definite and satisfy the following conditions；

<2.8.1) D*A*P(«)： Z/(Q)f 胡。([o, t]； zn(尸))are bounded and

(2.8.2) Z)*A*P(.)S(.)AP：L2(r)->L2(S) are bounded.

Remark. Under assumption (2.7), it is shown that the 
operator P(£) in theorem 2.4 is in the class S (see [C. 
口).

Then we have the following theorem.

Theorem 2.5. Under assumption (2.7), the operator P 
in theorem 2.4 is the unique solution in the class 宓 

to the following Riccati equation
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(R.E.2) for x,y^ L2(fi) and 0<t< T,
(P(t)x, :y)a=j： (S(s-f) X, FS(s-t)y) a ds

-f\z)*A*P(s)S (s-f) X, D*A*P(s)S 

(，一切，)『ds+(S(7、T)%, GS(T-i)y)nt

(R.E.3) for x,y ^D(A), a. e. t in [0,7],

号亍(P(£)%jy)e = — (%, F))q一(F0)h4比：y)e 

一(R言)xtAy)a
+ (Z)U叩(£)%, D*A*P (t)y)r

with terminal condition P(T、)=G.

Remark, without smoothness assumption(2.7), we are 
not sure whether D*A*P (t)x are well-defined in L2 
-sense for x^L2(Q).

Suppose that the pairs F„ and Gtt satisfy assumption.
(2.7) for all n=L2,….Let Pn(t) be the corresponding 
Riccati operators to the pairs Fn and Gn, for n=L2,3,….

Now we do not assume any smoothness for F and G. 
Then we have the following convergence.

Theorem 2. 6. Suppose that FlF and Gn->G strongly 
on L2(Q) as ns Then uniformly in tW
[0, TJ, strongly on L2 (Q) as 处s.

Moreover, for (Q), 0<^< T,

(F(t)号)(S(s-眼 FSd方)a ds+(S(T-t)X,

GS(T-必)(s) S (s-t)x, K-*CO * t
乙)*/*R(s)S(s—t)y)r ds.
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3. Proofs of Results

We sketch the proofs of lemmas 2.1 and 2.2 briefly, 
and we omit proofs of theorems 2.3,2-4,2.5 and 2.6 since 
their proofs are similar to those, in

Suppose for a moment that the coefficients Ay(x) 
and N(x) in (2.3) are frozen at the values on a 
boundary point Xo1 W尸.

Then we apply Fourier transform the equation (2.3) 
in the tangential variables %七 and denote the transf­
orms of y, y0 and yn by y,夕° and 丸 respectively.
We arrive at

(32) 4】(o,始)一#=(代一1，矿(o, x«lt 汕))或 for x^>Q

项+ +« for Xi—0

where W(0, xl, iw)^ iw) 1^12(0,xJ, iw)
、卬七2(0，持加)协22(0故如如)，

and w—(w2,......, wm) UR히t,

By assumption (L5) and (1.7), we have

(3.2) (h=LK—Wn (0,砒*)]"Wi2(0,砒，汕)丸，xC>0
&-宇j=[W、2 (K-Wn)T Wu+(K-収2)]丸， 

dxi
初〉0

(丸=N§+ +u for Xi~0.
We may rewrite (3.2) in a pseudo-differential form for 
the variable coefficient problem as

(3.3.1) 兑=卩【一帝11(多，讪)丁1師2 (%3z“)丸"£〉0

(3.3.2) &愆)祟丄=顷气2 (xt w) (K- Wn(.x, w))'W12

(#,/汝)+ (K—卬‘22(%,Z初))]丸，*i〉0
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(3.3.3) 夕.=N(*i)为+纨％i=O where
Wu (x, w)f Wp(払刼)and 卬22(1 汕)are the pseudo-dif­
ferential operators of order 1 corresponding to the difi- 

m A aerential operators S 一，L A12(a;)-^—1=2 OX] j=2 OX J
and L』4产(%)-弟一 respectively.

Let M{K,x,iw)=A-l[WTl2 (K—"u)t W12+K-W22].

Then we arrive at
(3.4.1) 丸=（K 一印\） #1〉0

(3.4.2) 祭-=血勿 

dxi ' *1〉O

(3.4.3)
The problems

夕.=N夕++& ‘为1=0,

(3.4.2) and (3.4.3) are the same kind Majda and 
Osher studied in EM. 1].

That is, they showed that there exists a symmetrizer 

of S3 whose symbol R (、K, x, iw) is of order zero and 
satis fies the following properties (see [_M. 1])；

(3.5.1) R is Hermitian,
(3.5.2) 丘可끼2-이g|2 for all vectors satisfying the 

boundary condition v.=N v++g,

(3.5.3) Re (R必)M 8 where d〉0 and e>0 are constants
independent on x^Q, and K〉0 large enough.
Thus combining (3.4.2) and (3.4.3) with (3.5.1), (3.5.2) 
and (3.5.3), we have, for sufficiently large K>0,

(3.6) |j„|n + b시rW이씨r where C is a constant inde­
pendent on u.
On the other hand, we suppose that j is a solution to
(2.3).
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We take the inner product (2・3) with y on Q.
Then we have

(3.7) (彳(給衫况)払y)n =KI硏％.

By Green's formula, the left hand side of (3.7) becomes
7 7 m

ynt 3?n)r —S (方八

That is,

•K]评(島 &)<y)a = 一*「(& 卯 yn)r> 
厶 z=i ox ] e

Thus, for sufficiently large K〉0, we arrive at

(3.8) \y\£i<C b시' for a constant C.

From (3.6) and (3.8), we derive the ineguality [硏a+b福广
W이씨广 for sufficiently large K〉0・

Once we have the energy inequality, we can deduce the
uniqueness and existe교ce easily as in [C. 1J.
This completes the proof of lemma 2.1.

We assume, without loss of generality, K=0.
From Green's formula, we have for and g(=L2(r)^

(3- 9) (4初 Dg、)요 = (yt A(xr ~备厂) Dg)q+ (A„y„, (Z)g)，》、.

By the definition of the operator D, (3.9) becomes

(A^ytDg) =(A眼(Dg)n )r.

From the fact that y^D(A^) and (Dg).=N(Dg)q~g on 
r, we arrive at

(&列 Dg)a= (厶以이 g) r
which implies lemma 2・2.・
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