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OPTIMAL BOUNDARY CONTROL PROBLEMS
FOR SYMMETRIC HYPERBOLIC SYSTEMS
WITH CHARACTERISTIC BOUNDARIES.

Sung Kac CHANG

1. Introduction.

A number of authors [C.1,C.2,L.1,1.2,L.3,V.1] known
to us have studied optimal boundary control problems
for hyperbolic systems in several variables with noncha-
racteristic boundaries.

But moany important preblems, for -instance, Maxwell
equations and linearized shallow water equations, have
characteristic boundary conditions.

In this paper, we study control problems for hyperbo-
lic systems with characteristic boundaries, which is
different from others.

Let ¢ be an open domain in R™ with smooth boundary
I for an integer m>1., We consider a first order differ-
ential operator of the form

9

7%, 4-C(x) for x&Q

L1 A@0/6x)=5 A=)

where A,(x) and C(x) are ({-+#)X{({+n) smooth sym-

metric matrix valued functions on @, / and » are given
positive integers.
We also require that A,(x) and C(x) are constant for

sufficiently large |x| in Q.
We assume the uniform characteristic boundary, that 1s,
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(1.2) the normal matrix N,(x)= Zm: A (x)n,(x) have
=1

constant rank » for all x&r where (#;(x)) are the inw
ard normals to the boundary 7" at x in 7.

Without loss of generality, we may assume that N,(x)}
have k negative real eigenvalues and (z—%) positive real
eigenvalues.

We now consider a mixed initial boundary value prob
lem as

-3 %=A(x, 3/9x)y+h on [0, TIX 0=Q
b B(x)y=u on [0, TIX =%
1 y(0)=f on 0,

where g(x)-is a boundary operator which amnihilates
the null space of the normal matrix N,(x) at x&r, A&
L¢(Q), f&L@)and u=L2(Z)™,

For the simplicity, we transform our problem into one
on a half-space by using local coordinate changes and a
partition of unity. Thus we may assume without loss
of generality that

(1.4) 9= {x&R"™ |x >0} and r={x=R" |x,=0}.

Then the normal matrix N,(x)=A,(x) for x in 7.
By smooth change of coordinates, we may assume

(1.5) A;=[0 0 0 , A, = 4 0
0 4; 0

0 At
0 0 A}

where A; is a negative-definite ZX % matrix and At is
positive-definite (#—k)X (#n—k) matrix,

™) L2(Q)=12(Q;:R*"), L2(0)=L2(Q;R"*") and L2(5)=
L2(Z3RY),
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Henceforth, we assume (1.4) and (1.5) without loss

of generality.
For x=R", y=R'*", we partition x and y as x={(x,x")7,
y={50,5,34)7 and y,==(9.,94)7 where x'={(xp, - %n)7,
Yo={(D1, *eooe- YTy P-=(Prs1y rovereere yroT and Y= (Yires1s
......... Vian)T.

In order to be well-posed for the problem (1.3), it is
well known that the boundary condition S(x)y=w can be
written in the following form;

(1.6) y.=N(x)y++u for X7,
where N(x) is a smooth kX (#z—k) matrix valued function
on I which is constant for sufficiently large {x] on 7
(see [M.1]).

We partition matrices A,(x) as [A,ll A,lz‘l where A1

A2 A2
and A2 are! X ! and z X # square matrices respectively
for j=2, - , m, and A12=(A,2)7 is [ X #» matrix.

Let us denote Wy(w)=3= A iw,, Wy(iw)=3= A,
=2 i=2

iw, and ng(z'w)zmz A2 fw, for w=(ws, - w.)ER™, w#0,
1=2

We assume for Wy(iw) that

(1.7) the matrix Wi (iw) has distinct eigenvalues (pure
imaginary) for every weER™!, w#(.

We assume, without detail, other appropriate condit-
ions for the problem (1.3) to be well-posed in the Kreiss’
sense (we refer to [M.13)

Under appropriate assumptions {M.1], we have the
following theorem.

Turorem 1. For any T2>0, fe=L2(Q), A=L2(Q) and u&
12(2), the problem (1.3) has a unique strong solution y
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in L2(@) and unique strong solution y{f) in L2(Q) at
each time &[0, T
Moreover ¥, has strong boundary value in L%(3) and

the following inequality holds;
(1.8) |y at1ylet [yl z<CL fot |2l ol 2],
where C is a constant independent on f, % and .

ReEmARk. ¥, in theorem 1 may not have boundary value
at all in 12(2).

We are interested in boundary control problem. Hence
here after it may be assumed that f and % are fixed,
moreover let 2=0, and C(x)=0.

‘We mow are in a pesition to formulate optimal control
problem for the system (1.3) as follows.

Suppose that F and G be given bounded, self-adjoint
and positive-definite linear operators on L2(Q).

A quadratic functional cost [ is defined as

(1.9) J@)=1ul3+ (3, F9) e+ (3(T), Gy(T))a

for #=L2(3) and correpponding solution y to the system
(1.3).

(C.P) Our problem is to minimize the cost J(u) over
u=12(3).

Our main goal is to show that an optimal control 2°
exists in L2(2) and it can be synthesized as a feedback
form, that is,

w0 () =BP()y*(¢) for a.e. t<[0, T

where B is an unbounded linear operator on L2(Q) into
12(ry, P(t) is a Riccati operator on L2(0) and »° is the
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optimal trajectory corresponding to #°.
We state the main results in the next section and
sketch briefly their proofs in section 3.

2. Main Results
We introduce an operator A on L2(Q) as
(2.1) Ay=A(x, 3/3x)y for y=D(A)

where the domain D(A)={y=L2(@)|Ay=L2(Q) and y.=
Ny, on r}. Then it is easily seen that A is closed and
densely defined on L2(Q), furthermorc it generates a
strongly continuous semigroup S(Z) on L2(Q).

REMARK, The adjoint A* of A is given by

g 3 Dy 2
@2) A'y=—-F 4@ Fry — Lz 4@

for y=D(A*)where the domain
D(A*)={yc L(@)[A*ye L2(Q)
and y.=—(A¥ )"'INTA;y. on I}.
It is also well-known that A* generates the adjoint
semigroup S*(¢) of S(¢) on L2(@).

In order to introduce a Dirichlet map “D” which ext-
ends boundary functions to interior functions in a certain
way, we consider the following boundary value problem:

(2.3) {A(x, 9/9x)y=Ky on Q

y.=Ny, +uon r
for u=12(r) where K is a large constant.
Then we have the following lemma.

LemMma 2.1,
The problem (2.3) is well-posed for a sufficiently large



106 SunG Kac CHANG

number X >0. Moreover, the following inequality holds:
(2.4) Iyla+19.1r <Clu|; for w=L2(r)

where C is a constant independent on «.

Once we have chosen K so that (2.3) is well-posed,
we fix K. For the simplicity, we may assume K=0 (If
K#0, we simply translate A by K)

From lemma 2.1, we define the Dirichlet map D as:

Du=y if y is the solution to (2.3).
Then D is a bounded linear operator on L2(I) into L2(Q).
Now have the following trace operator.
Lemma 2,2,
D*A*y=Azy.|r for y=D(A*).
Let us define an operator L on L2(Z) as
2.5) (Lu)(t)=A j; S(t—s) D u(s)ds  for 0=<t<T
and #=D(L) which is a subspace of L2(2).

We have a semigroup representation of the solutions
to the mixed problem(l.3).

TaeEOREM 2.3. (Semigroup Representation),

(1) the operator L is a bounded linear operator on L2
() into C([O, T L2 (Q)),

(2) the solution ¥ to the problem (1.3) is given by

2.6) y@)=SESf—Lu)t) for 0<t<T.
From theorem 2.3, it is easily seen that our control
problem (C.P) has a unique optimal control z¢in L2(3)

by standard argument (see {C.1, L.1]).
Let us denote &(t,s) the evolution operator which
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describes the evolution of the optimal trajectory »° with
initial time s5,0<s<<¢t<<T (see[C.1,L.1]). Then we have
the following synthesis of optimal control #°.

Tueorem 2.4. (Feedback synthesis)

The optimal control #* can be written in the form
w2°(H)=D*A*P()y°(t) a.e.t=[0, T] where P(?) is a bou-
nded self-adjoint and positive-definite operator on 12(Q)
which satisfies the following Riccati equation:

(R.E.1) for x, yc12(@) and 0<¢<T,
POx.9)0 ={ (05,02, F 0(s,1))a ds

+{" (D*A*P(s) 0(s, )%, D*AP(s)8(s,1)9); ds
+ (8(T.)%,G o(T, 1)),

For a moment, we assume that

(2.7) F and G map L2(Q) into D(A¥).

We denote <# the class of one parameter families of
operators P(¢) on L2(Q) which are self-adjoint, positive-
definite and satisfy the following conditions;

(2.8.1) D*A*P(+): LA(@)—L=([0, T]; L*(r)) are bounded and
(2.8.2) D*A*P(+)S(-)AD:L*(r)—I2(X) are bounded,
Remark. Under assumption (2.7), it is shown that the

operator P(¢) in theorem 2.4 is in the class &2 (see [C,

1D.

Then we have the following theorem.

THEOREM 2.5. Under assumption (2.7), the operator P

(#) in theorem 2.4 is the unique solution in the class <
to the following Riccati equation
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(R.E.2) for x,y& 12(0Q) and 0<{¢< T,
(P()%, ¥)o= jf (S(s—1) x, FS(s—8)y) o ds

— [T (D*A*P(5)S (s—t) 5, D*A*P()S
(s—Hp)r ds+(S(T—-x, GS(T-1)y)a,
(R.E.3) for x,y &D(A), a.e. £ in [0, T],

2 (PW)%,9) 0=~ (%, F3)a— (P AZ.3)a

+(D*A*P()x, D*A*P(D)9);

with terminal condition P(T)=G.

Remarg. without smoothness assumption(2.7), we are
not sure whether D*A*P (H)x are well-defined in L?
~-sense for x&=1L2(Q).

Suppose that the pairs F, and G, satisfy assumption
(2.7) for all n=1,2,-. Let P,(t) be the corresponding
Riccati operators to the pairs F. and G,, for n=1,2,3, .

Now we do not assume any smoothness for F and G.
Then we have the following convergence.

THEOREM 2.6. Suppose that F,—»F and G,—G strongly
on L?(0) as #—oo, Then P,(#)—P(¢) uniformly in ‘&
[0, T, strongly on L2 (@) as n-+oo,

Moreover, for x,y&L2 (2), 0<t< T,
(Py%, 9)a={ (S(s~1)z, FS(s—1)9)a ds+(S(T—1)x,

T
GS( T-t)y)rlnimj‘ (D*A*P, (s) S (s—b)x,
D*A*P (s)S(s-t)y), ds.
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3. Proofs of Resulis

We sketch the proofs of lemmas 2.1 and 2.2 briefly,
and we omit proofs of theorems 2.3,2.4,2.5 and 2. 6 since
their proofs are similar to those in {c.1].

Suppose for a moment that the coefficients A (x)
and N(x) in (2.3) are frozen at the values on a
boundary point x,! &r.

Then we apply Fourier transform the equation (2.3)
in the tangential variables x!, and denote the transf-
orms of y, y, and y, by 3, 3 and 3. respectively.

We arrive at

G- {4y 0.6 F=E-W, 2, i)} for >0
| 2=N@)3s +i for ;=20

where W(0, %, ww)=] Wi(0,x), iw) W(0,x5 iw)
W7T12(0, %3, iw) W (0, %), iw)
and w={10q, >+ . We) ER™YL w0,
By assumption (1.5) and (1.7), we have
(3.2) (3e=[K—Wu (0,53 iw)] Wi(0, 2L, 20) .. x>0

A Be =Wy (K= Wit Wit (K= W) D3,
X1 xl>0
¥.= N3, +a for x2,=0.
We may rewrite (3.2) in a pseudo-differential form for
the variable coefficient problem as

(3.3.1) yo:[K—Wxi(x,iw)]_IWm (x,iw)3., ,%,>0
(3.3.2) A.(x) "i,iz (W1 (% i0) (K — Wy (2, i) Wiz
(xﬁzw)+(KHW22(xaiw)>]9no x1>0
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(3.3.3) 9. =N(x1)9,+2,2,=0 where
Wi (x,6w), Wi(x,iw) and Wa(x,iw) are the pseudo-dif-
ferential operators of order 1 corresponding to the difi-

erential operators 2
and Z,' A2 (x) respectwely.

1=2 axl
Let M(K, %, iw)=A, [ W7 (K—Wu)? W+ K-Wsl.

Then we arrive at

(3.4.1) 9=(K—~W11) W3 x>0
A3,

(3.4.2) dx, —=M3, x>0

(30403) -—N?q_"l"!z x1~:0a

The problems

(3.4.2) and (3.4.3) are the same kind Majda and
Osher studied in [M.1].
That is, they showed that there exists a symmetrizer

of i whose symbol R (K, x,iw) is of order zero and
satis fies the following properties (see [M.1]):

(3.5.1) R is Hermitian,

(3.5.2) vTRy=8|v|?-¢|g|? for all vectors satisfying the
boundary condition v.=N v.+g,

(3.5.3) Re (RM)= 8 where >0 and ¢>0 are constants
independent on =0, weER™! and K>>0 large enough.
Thus combining (3.4.2) and (3.4.3) with (3.5.1), (3.5.2)
and (3.5.3), we have, for sufficiently large K >0,

(3.6) |¥ala + ¥.1+=C|u|; where C is a constant inde-
pendent on .

On the other hand, we suppose that » is a solution to
(2.3).
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We take the inner product (2.3) with y on Q.
Then we have

5.7 (A(x,0/8z)y, y)a =K|y].
By Green’s formula, the left hand side of (3.7) becomes

1 i ke ¢
—-2-(A,. Vs yn)r——z“(y-;é:l (WA’)y)Q.

That is,
Klyltat L5, 8 (2 4pm)e = L (4s 30 32)
frENNE Voax, TR g R oA Sl

Thus, for sufficiently large K >0, we arrive at
(3.8) 191o<C |3,], for a constant C.

From (3.6) and (3.8), we derive the ineguality {v|a+¥.lr
<Clul, for sufficiently large K >(.
Once we have the energy inequality, we can deduce the
uniqueness and existence easily as in [C. 1].
This completes the proof of lemma 2. 1.

We assume, without loss of generality, A=0.
From Green’s formula, we have for y=D(A*) and g=22(0),

(3.9) (A%, DRa=(5, Az, ~2) DDot(Auy,, (D).
By the definition of the operator D, (3.9) becomes
(A*y,Dg) =(Awy» (Dg)s ).
From the fact that y=D(A*) and (Dg).=N(Dg).+g on

I, we arrive at

(A%, Dg)a=(Asy- )1

which implies lemma 2.2..
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