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REPRESENTING MEASURES RELATED TO ALGEBRAS

Yeong-man Nam

The theory of representing measures is historically the 
first subject discussed in the representing theory of com­
plex homomorphism. A major motivation for the study 
of it stems from an attempt to specialize the Riesz rep­
resenting theorem to non—selfadjoint algebras. For the 
function algebra, one of the useful features of boundary 
problems is that each complex homomorphism of the 
algebra can be represented as integration with respect to 
a positive measure. Though there are many methods in 
solving boundary problems, one of the particular methods 
is representing measures in complex Cn space.

Recently, K. Hoffman and I. Singer discussed measures 
and the Silov boundary in paperQj, in particular, H. S. 
Bear[^2,3] foreshowed methods which treat the relation­
ship between any measures and pervasive subalgebras of 
the maximal function, algebra and showed the structure 
of such measures^]. W. Rudin[5] proved the representing 
measure for the ball algebra and connected with Lum- 
mer's Hardy space with respect to the annihilating 
measure in [6]・

Now let B be the open unit ball in complex Cn space 
and A(B) be the ball algebra of B which is the class of 
complex continuous functions on S (the boundary of B) 
and holomorphic in B, then the Hahn-Banach theorem, 
Riesz representing theorem and properties of the Silov
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boundary yield the following facts； For any bounded 
linear functional 。on A(B), there exists a complex 
measure with respect to。such that

f dm9

for all f in A(B) and |泌|[= |仞制，such is called a 
representing measure for 饥 If, moreover, it is a proba­
bility measure associated linear functional。on A(B),

has the property ©(1) = "H = 1. Besides the Silov 
boundary is the smallest compact Hausdorff space on 
which the algebra A can be realized as a closed separa­
ting algebra of continuous functions.

1. The uniqueness of representing measures

Let X be a compact Hausdorff space in Cn and A be 
the function algebra on X. In the case of greatest inter­
est to us, X will be S and A will be A(S), the restric­
tion of the ball algebra A(B) to the boundary S of B. 
Then we have the following facts by the consequence of 
the maximum modulus theorem.

Proposition 1.1. Two algebras A(S), A(B) are isome­
trically isomorphic Banach algebra.

Proposition 1.2. Each function algebra A on X is closed 
in the sup-norm topology, contains the constants and 
separates points on X.

Since Mf) is non-negative for any continuous function. 
f on B, 0</<l, and ||1-/||<1, |^(l)-^(/)l<l, so we 
claim the following fact.

Lemma L3. If is a linear functional on A(B) and 
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^(1) — 11^11=1, the- associated measure is a probability me­
asure.

It follows that any representing measure for © is a 
probability measure. In above argument we could replace 
B by any closed subset Bf of B such that j^(/)!<sup 

一

\f\ for f in subalgebra of A(B). Such a set we call a 
support set for 如 since it is a set which support a 
representing measure for 如 The difference of any repre­
senting measures for the linear functio효al § on A(B) is 
always orthogonal to the ball algebra A(B), so the foll­
owing fact is satisfied.

JLemma 1.4. Let gn 卜 伽 be any 上ep호ese요ting measures 
for 如 then the difference of m” z妇 is a real measure 
on B.

Though the uniqueness of representing measures is not 
guaranteed but we claim the following theorem by the 
consequence of the above facts and properties of the Silov 
boundary.

Theorem 1.5. If there is no non-zero real measure on 
the Silov boundary which is orthogonal to the ball alge­
bra A(B)9 then each.。in the maximal ideal of A(8) has 
a unique representing measure.

Any algebra is a Dirichlet algebra on B if amd only if 
no non-zero real measure on B is orthogonal to A(B). 
This implies the following fact.

Theorem 1.6. If the ball algebra A(B) is a Dirichlet 
algebra on its Silov boundary, then. each, linear functional 
。in the maximal ideal of A(B) has a unique representing 
measure.



74 Yeoung-man Nam

Proposition 1.7. Representing measures are unique for 
every complex homomorphism of Hp for 力=8. Since 
possesses a property which is very close to the Dirichlet 
property.

2. Some properties of M
Now M is the class of those representing measure 

on the sphere S which is the boundary of the open unit 
B in Cn that satisfies

虬f)=S j岫

for every f in A(B). When n—l9 M has exactly one 
아，namely normalized Lebesgue measiMe oa ihe 

unit circle.
Lemma 2・1. M is a convex set and weak -compact.

Lemma 2.2. M also has the corresponding weak*-topo- 
logy. In general, it turns out to be a very large set 
when w>l. Moreover the members of M are the circular 
probability measure m6 on S, these satisfy

v dm@

for every v in the class of continuous function C(S) on 
S for every real 涉.

To see some others, take n=2” for simplicity. Let 

be any probability measure on U(JJ\ open ball in C2), 
then the following fact is satisfied.

Proposition 2.3. For every g in A{U)9

da=©(g).
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For example, might be concentrated on a simple 
closed curve in U that surrounds the origin, in such a 
way that ms solves the Dirichlet problem at 0 relative 
to the domain bounded by a simple closed curve in U. 
Then the measure m satisfies；

Theorem 2.4. If the measure mz satisfies the following 
equation

v dm^ 广 히"”1 —I지2) d09

then mT belongs to M for every 〃UC(S) and zWS

Proof. To see this, simply note that the inner integral 
•on the right side of the theorem 2-4, with v replaced by 
/ in A(B), equals /(2,0). The support of this m，、is the 
set of all (2, w) in S for which, z lies in the support of

Furthermore the set M plays a role in the study of the 
Lumer's Hardy space (LH)*B) on the open unit ball B. 
First we introduce the definition of this space.

Definition. The Lumer's Hardy space (LHy(B) is the 
■class of holomorphic in B provided that \f\p has a pluri­
harmonic majorant in B9 i.e., provided that \f\p<,R^ g 
for some holomorphic g in B for 0〈力<8.

We now list some consequences of the space.
Since (LHy(B') contains a closed subspace that is isomor­
phic to Z°° and lies in it follows that A(B) is
separable in. the norm topology of

Proposition 2. 5. (i) is 교ot separable and
0(B) is dense in (LH)KB)

(ii) is not isomorphic to a Hilbert space.
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To see the connection between M and (LH)P9 associ­
ate to every continuous real function v on S, the numbers；

a(〃)=sup z；：real continuous on S, m

F(〃)=inf {勿(0)： u^Re A(B)9 u>v on S}.

Since every in M satisfy = 了 with Re f in 

place of /, it is clear that a(〃)M8(〃). The converse 
inequality is proved in [7]. So we have the remark as 
following：

Remark 2・6・ The preceding numbers a(〃), are 
equal on S.

This remark and above facts imply the following.
Theorem 2・7・ A holomorphic f in D lies in (匸H)@(B) 

if and only if

sup I 刼為<8
，.洲 J S

where 0<r<l, m后M.

3. Representing measures on the Silov boundary

Our discussion of maximal subalgebras of C(X) has not 
involved any detailed information about the relation of 
the compact Hausdorff space X to the algebra A. Further 
discussion requires the introduction of the maximal ideal 
space and Silov boundary for A.

Let A be a closed subalegbra of C(X)9 as usual conta­
ining the constants and separating points. The space of 
maximal ideals of A is the set M(A) of all non-zero 
complex linear functionals on A which are multiplicative. 
Each such multiplicative functionals is automatically of 
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norm 1 and we give to M{A) the weak topology which 
it inherits as a subset of the unit shpere in the conjugate 
space of A. The space Af(A) is the largest compact Ha- 
usdorff space on which the algebra A can be realized as 
a separating algebra of continuous functions.

In M(A) there is a unique minimal closed subset r(A) 
which every function in A assumes its maximum 

modulus. We call r(A) the Silov boundary for 
Since each function in A assumes its maximum on r(A) 
we may regard A as a subalgebra of C(r). The minima­
lity of r(A) we may regard X as a of C(r). The mini­
mality of r shows that r is the smallest compact Haus- 
dorff space an bdi_ A can be realized as closed 
separating algebra of continuous functions. So we can 
define the representing measure on the Silov boundary 
r like the preceding methods as following. If z^M(A)9 
there is a positive measure on r such that

7(z) = J*广 dm^

for every / in A. This representing results from the fact 
that any continuous linear functionals on C(尸)which has 
norm 1. To apply to the representing measure, let us 
make the following definition.

Definition. The algebra A is called pervasive if A is 
a pervasive subalgebra of C(r).

It follows that if A is a pervasive subalgebra, of C(X) 
then X=P but A may be pervasive on r and not on X.

Theorem 3.1. Let A be a pervasive subalgebra of C{r)9 
let and be any representing measure on r.
Then the closed support of is all of r.
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Proof. Let K be the closed support of Suppose K is 
a proper closed subset of r. Since f{z) = f f dm^ 

|f(2)|^sup |f|, 
K

and since A is pervasive the measure defines a multi­
plicative linear functional on C(K). Thus must be a 
point mass, which is absurd since W*

Corollary 3.2- Let A be a pervasive subalgebra of 
C(r) and let / be a function in A which has norm 1， If 
there is a point zWM(A)-尸 such that —1, then f 
is a constant.

(거representnxgnireasare Since has 
mass 1, and

l = |jf(z)| = | Q?씨,

it is clear that f(x) =/(2)for all x in r.

Of course Theorem 3・ Z and its corollary hold for essen­
tial maximal algebra. We have stated them for perva­
sive algebra to emphasize o효ce again that the pervasive 
property of maximal algebras is the fundamental one.

Proposition 3-3. Let / be a function in A which has 
norm 1, and let K be the subset of M{A) on which y*=L 
Let Ak be the algebra obtained by restricting A to the 
set K. Then AK is closed and

i)
ii) If zwK, then any representing measure 叭 is supp­

ort on KC\r.
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