ON SEMI-CLOSURE STRUCTURES AND TOPOLOGICAL MODIFYING STRUCTURES

BAE HUN PARK AND WOO CHORL HONG

1. Semi-closure structures

Let X be any non empty set and $\mathscr{P}(X)$ the power set of X. A function $u:\mathscr{P}(X) \to \mathscr{P}(X)$ is called a semi-closure structure [3] on X if satisfies the following four conditions;

- 1) $u(\phi) = \phi$,
- 2) $A \subset u(A)$ for each $A \in \mathscr{P}(X)$.
- 3) $A \subseteq B \Rightarrow u(A) \subseteq u(B)$ for each $A, B \in \mathscr{P}(X)$, and
- 4) u(A) = u(u(A)) for each $A \in \mathscr{P}(X)$.

A pair (X, u) where u is a semi-closure structure on X, is called a semi-closure space. These concepts are generalizations of the more familiar Kuratowski closure operator and topological spaces, respectively. For a convinience, we shall agree to use \mathscr{U} as $\{A \subset X \mid u(X-A) = X - A\}$. Clearly, a semi-closure structure u is satisfied i) $X, \phi \in \mathscr{U}$ and ii) for every $A \in \mathscr{U}$ $i \in I$, $\bigcup_{i \in I} A \in \mathscr{U}$, but the finite intersection of elements of \mathscr{U} is not an element of \mathscr{U} , in general (A family \mathscr{U} of subsets of X satisfying the above conditions i) and ii) is called a pretopology [1], a supratopology [2], or a semi-topology [6] for X.).

The concept of semi-closure structures is motivated by the following examples;

EXAMPLE 1.1. Let (X, \mathcal{F}) be a topological space and - and 0 denote the closure operator and the interior operator in X, respectively. Then

$$\mathcal{F}^{\circ} = \{A \subset X | A \subset A^{\circ}\},$$

$$\mathcal{F}^{\beta} = \{A \subset X | A \subset A^{\circ}\}, \text{ and }$$

$$\mathcal{F}^{\gamma} = \{A \subset X | A \subset A^{-\circ}\}$$

are pretopologies but not topologies for X[1,5].

EXAMPLE 1.2[6]. Let X and Y be any two non empty sets and \mathscr{F} a subcollection of $\{f \mid f: X \rightarrow Y \text{ is a function}\}$. Let K(f,g) denote the coincidence set of f and g, consisting of all points $x \in X$ such that f(x) = g(x). Define $u: \mathscr{P}(X) \rightarrow \mathscr{P}(X)$ by

 $u(A) = \bigcap \{ K(f,g) \mid K(f,g) \supset A, f,g \in \mathcal{F} \}.$

Then if $\bigcap_{f,g \in F} K(f,g) = \phi$, then u is a semi-closure structure on X.

Moreover, if $Y = \{0, 1\}$, then the above semi-closure stucture u is a Kuratowski closure operator.

EXAMPLE 1.3 [8]. Let X be any non empty set and G and \mathscr{C} denote a transformation group of X and the equivalence relations of X, respectively. Then between the complete lattice \mathscr{G} (the set of all subgroups of G) and the complete lattice \mathscr{C} there can be established a dual

(inverse) Galois connection[7] G=s such that

1) $\sigma(A) = \{a \sim b | f(a) = b$, for some $f \in A$ for each subgroup A of G and

2) $\tau(\sim) = \{f \in G | f(x) \sim x, \text{ for any } x \in X\}$ for each $\sim \in \mathscr{E}$. By the Galois connection $(\sigma\tau, \tau\sigma)$, we can prove that if $\sigma(\phi) = \phi$ and $\tau(\phi) = \phi$, then $\sigma\tau$ and $\tau\sigma$ are semi-closure structures on \mathcal{G} and \mathcal{E} , respectively. In [7], these structures $\sigma\tau$ and $\tau\sigma$ are called closure operators.

2. Topological modifying structures

Let X be a non empty set and let Γ be a collection of semi-closure structures on X[3,4]. Γ is called a topological modifying structure on X if for each $A, B \in \mathscr{P}(X)$ and for each $u, v \in \Gamma$, there exists an element w in Γ such that $u(A) \bigcup v(B) \supseteq w(A \bigcup B)$. Let (X, u) be a semi-closure space. We let $\phi_u(x) = \{A \subseteq X : x \notin u(A^c)\}$. In a topological space $(X, u), \phi_x(x)$ is clearly the neighborhood system at x in (X, u) for each $x \in X$.

REMARK. (1) If a topological modifying structure r on X has only one element u, then u satisfies the Kuratowski closure axioms. From now on, we shall agree to use u as the unigue topology for X determined by u.

(2) Any collection of semi-closure structures on X is not a topological modifying structure on X, in general, as shown by the following example A.

(3) Any collection of topologies for X which has at least two elements is not a topological modifying structure on X, in general, as shown by the following example B.

EXAMPLE A. Let (X, \mathcal{F}) be a topological space and and denote the closure operator and the interior operator in X, respectively. Then

$$\mathcal{F}^{*} = \{A \subset X: A \subset A^{0}\},$$

$$\mathcal{F}^{*} = \{A \subset X: A \subset A^{-0}\} \text{ and }$$

$$\mathcal{F}^{*} = \{A \subset X: A \subset A^{-0}\}$$

are pretopologies [1,5], but not topologies for X. If u_{τ} , v, and w are semi-closure structures on X determined by $\mathcal{F}^{\alpha}, \mathcal{F}^{\beta}$, and \mathcal{F}^{τ} , respectively, then $\Gamma = \{u, v, w\}$ is not a topological modifying structure on X.

EXAMPLE B. Let $X = \{a, b, c\}$ and $u = \{X, \phi, \{a\}, \{a, b\}\}$ and $v = \{X, \phi, \{b\}, \{b, c\}\}$. Then u and v are topologies for X and $u\{c\} \cup v\{a\} = \{a, c\} \supset u\{a, c\} = v\{a, c\} = \{a, b, c\}$. Therefore $\Gamma = \{u, v\}$ is not a topological modifying structure on X.

THEOREM 2.1. Let Γ be a topological modifying struc ture on a set X. Then $\bigcup_{u \in \Gamma} \phi_u(x)$ is a neighborhood system at x, for each $x \in X$. That is, Γ determines a topology T_{Γ} for X.

PROOF. 1) Set $N_x = \bigcup_{x \in \Gamma} \phi_u(x)$ and let $A \in N_x$. Then there is $u \in \Gamma$ such that $x \notin u(A^c)$. Since $A^c \subset u(A^c)$, $x \notin A^c$ and thus $x \in A$.

2) Let A and B be two elements of N_x . Then there are $u, v \in \Gamma$ such that $x \notin u(A^c)$ and $x \notin v(B^c)$. Since Γ is a topological modifying structure on X, there exists $w \in \Gamma$ such that $x \notin u(A^c) \bigcup v(B^c) \supset w(A^c \bigcup B^c) = w((A \cap B)^c)$. Now we have $x \notin w((A \cap B)^c)$ and thus $A \cap B \in N_x$.

3) Let $A \in N_x$ and $A \subseteq B \subseteq X$. Then there exists $u \in P$ such that $x \notin u(A^c)$. Since $A \subseteq B$, $B^c \subseteq A^c$ and $u(B^c) \subseteq u$ (A^c) . It follows that $x \notin u(B^c)$ and thus $B \in N_x$.

4) Let $A \in N_x$. Then there exists $u \in \Gamma$ such that $x \notin u(A^c)$ and we have $x \in X-u(A^c) \subset A$. Let $B=X-u(A^c)$. Then we shall prove that i) $B \in N_x$ and ii) $A \in N_y$, for each $y \in B$, that is, for each $y \in B$, $y \notin w(A^c)$ for some $w \in \Gamma$. i) Since u is a semi-closure structure on $X(i.e., u \in \Gamma)$, $u(B^{c}) = u((X - u(A^{c}))^{c}) = u(u(A^{c})) = u(A^{c})$. Since $x \notin u(A^{c})$, $x \notin u((X - u(A^{c}))^{c})$ and thus $B = X - u(A^{c}) \in N_{r}$.

ii) Since $B \cap u$ $(A^{\epsilon}) = \phi$, $y \notin u(A^{\epsilon})$ and thus $A \in N$, for each $y \in B$.

The proof is complete.

THEOREM 2.2. Let (X, \mathcal{F}) be a topological space and let I' be a collection of semi-closure structures on X such that $\mathcal{F} \in I'$ and for each $u \in I', u \subseteq \mathcal{F}$. Then,

(1) Γ is a topological modifying structure on X.

(2) $\mathcal{T}_{I} = \mathcal{T}$.

PROOF. (1) Let u be the closure structure on (X, \mathcal{F}) . For each $v, w \in \Gamma$ and for each $A, B \in \mathcal{P}(X)$,

 $u(A) \bigcup w(B) \supseteq u(A) \bigcup u(B) = u(A \cup B).$

Thus Γ is a topological modifying structure on X.

(2) Let A be a neighborhood of x in (X, \mathcal{F}_r) . Then there exists an element v in r such that $x \notin v$ (A^{ϵ}) . Since v $(A) \supset u(B)$ for each $A \notin \mathcal{P}(X)$, $x \notin u(A^{\epsilon})$. Thus A is a neighborhood of x in (X, \mathcal{F}) . Conversely, let A be a neighborhood of x in (X, \mathcal{F}) . Then $x \notin u(A^{\epsilon})$ and thus $A \notin \varphi_u(x) \subset \bigcup_{v \in r} \varphi_v(x)$. Therefore A is a neighborhood of x in (X, \mathcal{F}_r) .

The proof is complete.

REFERENCES

 K. M. Garg and S. A. Naimpally, Cn some properties associated with a topology, General Topology and its Relations to Modern Analysis and Algebra II, Proc. of the Third Prague Topological Symposium (1971), 145-146.

- [2] Tagdir Husain, Topology and Maps, Plenum Press, New York and London, 1977.
- [3] B. H. Park, J. O. Choi, and W. C. Hong, On semi-closure structures, J. of Gyeong Sang National Univ., 22(1983), 1-3.
- [4] B.H. Park and W.C. Hong, Some properties of semi-closure spaces, J. of College of Education, Pusan National Univ.,8 (1984), 257-264.
- [5] O. Najastad, On some classes of nearly open sets, Pacific J. of Math., Vol. 15,3 (1965), 961-970.
- [6] S. Salbany, Reflective subcategories and closure operators, Categorical topology, Lecture notes in Mathematics 540, Springer-Verlag, Mannheim (1975), 548-566.
- [7] Bo Stenstrom, Rings of Quotients, Springer-Verlag, 1970.
- [8] A. Solian, Semi-topology of transformation groups, Proc. General Topology and its Relations to Modern Analysis and Algebra, Proc. of the Sym. held in Prague, (1961), 337-340.

Gyeongsang National University Pusan National University