PUSAN KYÖNGNAM MATHEMATICAL JOURNAL

Vol. 1, 43~46, 1985

FACTORIZATION OF POLYNOMIALS OVER A DIVISION RING

TAE HOON HYUN AND JAE KEOL PARK

Factorization of polynomials over a division ring will be considered in this short note. In fact, L. H. Rowen[3] refined Wedderburn's method [4] of splitting polynomials. Here we improve again Rowen's result on factorization of polynomials.

We start with following well known

LEMMA 1. Let D be a division rings with the center F. Then for every two-sided ideal I of D[x] there is a monic polynomial f(x) in F[x] such that I=f(x)D[x]. Moreover, I is a prime ideal if and only if f(x) is irreducible in F[x].

PROOF. Since D[x] is a principal (left and right) ideal domain, there is a monic polynomial f(x) such that I = f(x)D[x] of least degree. Now for d in D, r(x) = df(x)-f(x)d is in I and the degree of r(x) is less than that of f(x). Hence r(x)=0 and so f(x) is in F[x]. Straightfowardly, it can be verified that I=f(x)D[x]is prime if and only if f(x) is irreducible in F[x].

LEMMA 2. [2, Theorem 3, p. 179] Let D be a division ring with the center F and let K be a finite algebraic extension field of F. Then there are a division ring Aand two positive integers h, m such that

- (a) $D \otimes_F K = \operatorname{Mat}_h (A)$.
- (b) $K \subset Mat_m(D)$ as an F-algebra and m is such the

smallest positive integer.

(c) $hm = \dim_F K$.

Furthermore, A is the centralizer of K in $Mat_m(D)$.

Following [1] a right ideal g(x)D[x] is bounded if it contains a non-zero two-sided ideal. The sum of all non -zero two-sided ideals contained in g(x)D[x] is thus a two-sided ideal and is called the bound of g(x)D[x]. We say two polynomials $g_1(x)$ and $g_2(x)$ in D[x] are right similar if $D[x]/g_1(x)D[x]$ and $D[x]/g_2(x)D[x]$ are D[x]-isomorphic. In this case $g_1(x)D[x]$ and $g_2(x)D[x]$ have the same bound if one of them is bounded. Moreover, $g_1(x)$ and $g_2(x)$ are also left similar. So we just say $g_1(x)$ and $g_2(x)$ are similar when they are right similar.

THEOREM 3. Let D be a division ring with the center F and let p(x) be an irreducible monic polynomial in F[x]. If p(u) = 0 for some algebraic element u over F, then for any irreducible decomposition $p(x) = g_1(x)g_2(x) \cdots g_n(x)$ of p(x) in D[x] we have

- (a) Every $g_i(x)$ is similar to $g_1(x)$,
- (b) deg g_i(x) (hence all deg g_i(x)) is the smallest positive integer m such that F[u]⊂Mat_m(D) as an F-algebra,
- (c) D[x]/p(x)D[x] is D[x]-isomorphic to $\bigoplus \sum D[x]/g_{*}(x)D[x]$ and
- (d) p(x) is the minimal polynomial of u.

PROOF. We note that $D[x]/p(x)D[x]=D\otimes_{t}F[u]$ is simple Artinian. By Lemma 2, there are a division ring A and two positive integers h, m such that deg p(x)=hm, $D[x]/p(x)D[x]=Mat_{k}(A)$, and m is the smallest posit-

44

ive integer so that F[x]/(p(x)) is F-embedded in $\operatorname{Mat}_m(D)$. Actually there is a minimal right ideal V of the simple Artinian ring D[x]/p(x)D[x] with $\dim_D V = m$ and F[x]/(p(x)) is F-embedded in $\operatorname{End}_D(V)$.

Let $V = D[x]/\beta(x)D[x]$ with $p(x) = \alpha(x)\beta(x)$ in D[x]. Then since V is a minimal right ideal, $\beta(x)D[x]$ is a minimal right ideal of D[x] and so $\beta(x)$ is irreducible in D[x]. Now for an irreducible decomposition $p(x) = \beta(x)$ $\beta_2(x)\cdots\beta_k(x)$ in D[x], it can be verified that $\beta(x)D[x]$ and $\beta_1(x)$ have p(x)D[x] as the bound. (see [2], p. 39) So $\beta(x)$ and each $\beta_1(x)$ are similar. In particular, deg $\beta(x) = deg$ $\beta_1(x)$ for $i=2,\ldots, k$. Moreover, since deg $\beta(x)=m$ and deg p(x)=mk, we have h=k.

Now consider the given irreducible decomposition $p(x) = g_1(x) \dots g_n(x)$ in the assumption. Then obviously n=k and each $g_1(x)D[x]$ has the bound p(x)D[x]. So each $g_1(x)$ is similar to $\beta(x)$. Of course deg $g_1(x)=m$ is the smallest positive integer such that F[x]/(p(x)) is F-embedded in Mat_n(D). So we prove (a) and (b).

For (c), recall that the bound of each $g_i(x)D[x]$ is p(x)D[x]. Since p(x) is irreducible in F[x], D[x]/p(x)D[x] is D[x]-isomorphic to $\bigoplus \sum D[x]/g_i(x)D[x]$ by [1, Theorem 20, p.45].

Finally for (d), let *I* be the ideal of polynomial f(x)in D[x] such that f(u)=0. Then p(x) is in *I* and so *I* is a non-zero two-sided ideal of D[x]. Hence by Lemma 1 there exists a monic polynomial $f_0(x)$ in F[x] such that $I=f_0(x)D[x]$. But since p(x) is irreducible in F[x], we have $p(x)=f_0(x)$ and so I=p(x)D[x]. Hence p(x) is the minimal polynomial of *u* and the proof is completed. Observing Theorem 3 that every irreducible factor g(x) of p(x) has the same degree *m* which is the least positive integer such that $F[u] \subset \operatorname{Mat}_m(D)$ as *F*-algebras, we get following immediately.

COROLLARY 4. [3, Theorem 1.5] Let D be a division ring with the center F and let p(x) be an irreducible polynomial in F[x]. If p(d)=0 for some element d in D, then p(x) splits into linear factors in D[x] and p(x) is the minimal polynomial of d.

PROOF. In this case since $F[u] \subset D$, we have m=1. Hence each $g_i(x)$ is linear in any irreducible decomposition of p(x).

COROLLARY 5. Let D be a division ring with the center F and let p(x) be an irreducible monic polynomial in F[x]. If deg p(x) is prime, then either p(x) is irreducible in D[x] or p(x) splits into linear factors in D[x].

References

- N. Jacobson, The Theory of Rings, Amer. Math. Soc. Survey 2, 1943.
- N. Jacobson, The Structure of Rings, Amer. Math. Soc. Colloq. Publ. 37, 1964.
- L. H. Rowen, Central simple algebras, Israel J. Math. 29(1978), 285-301.
- J. H. Wedderburn, On division algebras, Trans. Amer. Math. Soc. 22(1921), 129-135.

Pusan National University

46