PUSAN KYÖNGNAM MATHEMATICAL JOURNAL

Vol. 1, 35~42, 1985

EVOLUTION EQUATION OF TYPE $\frac{du}{dt} + A\beta u \supseteq 0$ IN $L^{\infty}(\mathcal{Q})$

KI SIK HA

1. Introduction.

Let \mathcal{Q} be a measure space of bounded measure. For $1 \leq p \leq +\infty$, $L^{p}(\mathcal{Q})$ denotes the Lebesgue space of \mathcal{Q} with norm $\|\cdot\|_{p}$. Let A be an operator of $L^{p}(\mathcal{Q})$ and $\beta:\mathcal{Q}\times R \to \mathscr{P}(R)$ a mapping. Define the operator $A\beta$ of $L^{p}(\mathcal{Q})$ by

 $A\beta = \{ [u,w] \in L^{p}(\Omega) \times L^{p}(\Omega) | \text{there exists } v \in L^{p}(\Omega) \text{ such} \\ \text{that } [v,w] \in A \text{ and } a.e.x \in \Omega, v(x) \in \beta(x,u(x)) \}.$

The purpose of this paper is to study the Cauchy problem

$$\frac{du}{dt} + A\beta u \exists 0, \ u(0) = u_0$$

in $L^{\infty}(\mathfrak{Q})$.

Suppose that the following conditions are satisfied:

(H1) A is an m-accretive operator of $L^{\infty}(\Omega)$ and monotone in $L^{2}(\Omega)$,

(H2) a.e. $x \in Q$, $r \in R \to \beta(x, r) \in \mathcal{F}(R)$ is maximal monotone in R,

(H3) for every $r \in R$, there exists $v \in L^{\infty}(\Omega)$ such that a.e. $x \in \Omega$, $v(x) \in \beta(x, r)$,

(H4) for every $f \in L^{\infty}(Q)$ and $\lambda > 0$, there exists at most one solution $u \in L^{\infty}(Q)$ of $u + \lambda A \beta u \subseteq f$.

THEOREM 1. ([5])

Let (H1)-(H4) be satisfied. Suppose $A\beta \neq q$. Then $A\beta$ is m-accretive in $L^{\infty}(Q)$.

2. Solutions of $\frac{du}{dt} + A\beta u \in \mathbf{0}$ in $L^{\infty}(\mathcal{Q})$.

By [1] and Theorem 1, we have the following theorem on the integral solution in the sense of Bénilan of the equation:

THEOREM 2. Let (H1)-(H4) be satisfied. Suppose $A\beta \neq \emptyset$. Let $g \in L^1(0, T; L^{\infty}(\mathcal{Q}))$ for T > 0. Then for every $u_{\theta} \in \overline{D(A\beta)}$, there exists a unique integral solution u on [0, T] of $du/dt + A\beta u \circ g$, $u(0) = u_0$. Moreover $u(t) \in \overline{D(A\beta)}$ for every $t \in [0, T]$.

Suppose the following condition is satisfied:

(HC) A is m-accretive in $L^{\infty}(\mathcal{Q})$ and cyclically monotone in $L^{2}(\mathcal{Q})$ ([2]).

Remark 3. ([4]).

Let (HC) be satisfied. Then (H1) is satisfied and there exists a proper lower semi-continuous convex function ϕ defined on $L^2(Q)$ into $(-\infty, +\infty]$ with $\partial \phi = A_2$, where A_2 is the closure of A in $L^2(Q)$.

THEOREM 4.

Let (HC), (H2)-(H4) be satisfied. Then for every $u_0 \in D(A\beta)$, there exists $u \in \mathscr{C}([0, T]; L^{\infty}(Q))$ such that

$$\begin{pmatrix} \frac{du}{dt}(t) \in L^{\infty}(0, \mathrm{T}; \sigma(L^{\infty}(\Omega), L^{1}((\Omega))))\\ \frac{du}{dt} + A\beta u(t) = 0 \text{ a.e. on } (0, T)\\ u(0) = u_{0} \end{pmatrix}$$

for T > 0.

PROOF. By Theorem 1, $A\beta$ is m-accretive in $L^{\infty}(g)$. Consider the approximation equation

36

EVOLUTION EQUATION IN L*

(1)
$$\begin{cases} \frac{u(t) - u_{\epsilon}(t-\epsilon)}{\epsilon} + A\beta u_{\epsilon}(t) = 0 \\ u(t) = u_{0} \end{cases} \quad (t \ge 0)$$

for every $\varepsilon > 0$ in $L^{\infty}(\Omega)$. The equation (1) is written by

$$(u_{\varepsilon}(t) = (I + \varepsilon AB)^{-1}u_{\varepsilon}(t - \varepsilon) \qquad (t > 0)$$

$$(u_{\varepsilon}(t)=u_{0} \qquad (t\leq 0)$$

and it has at most one solution

$$u_{\varepsilon}(t) = (I + \varepsilon A \beta)^{-1} u_0$$
 for every $t \varepsilon((k-1)\varepsilon, k\varepsilon]$

Or

 $u_{\varepsilon}(t) = (I + \varepsilon A \beta)^{-(t/\varepsilon)} u_0$ for every t > 0.

By [3], $u_i(t)$ converges to u(t) in $L^{\infty}(\mathcal{Q})$ uniformly on every compact interval of $[0,\infty)$ as $\varepsilon \to 0+$ and if we put $u(t)=S(t)u_0$, then S(t) is a nonlinear semigroup of contraction generated by $A\beta$. By [1], the limit u(t) is the integral solution on $(0, \infty)$ of $\frac{du}{dt} + A\beta u \Subset 0$, $u(0) = u_0$ and $||u(t) - u(s)||_{\infty} \leq |t-s|||A\beta u_0||_{\infty}$ for every $t, s \geq 0$. Thus *a.e.* $t\varepsilon(0,\infty)$, u(t) is weakly differentiable in $L^{\infty}(\mathcal{Q})$. We put

$$w_{\iota}(t) = \frac{u_{\iota}(t) - u_{\iota}(t-\varepsilon)}{\varepsilon}.$$

For every $t \ge 0$,

(2)
$$||w_{\epsilon}(t)||_{\infty} = \frac{1}{\epsilon} ||(I + \epsilon A\beta)^{-\epsilon t/\epsilon} u_{0} - (I + \epsilon A\beta)^{-\epsilon t/\epsilon} u_{0}||_{\infty}$$

 $\leq ||A\beta u_{0}||_{\infty}.$

Hence w_{ε} is bounded in $L^{\infty}((0,\infty)\times\Omega)$. Let $v_{\varepsilon}(t)\varepsilon L^{\infty}(\Omega)$ such that

(3)
$$w_{\epsilon}(t) + Av_{\epsilon}(t) = 0$$

and a.e. $x \in Q$, $v_{\varepsilon}(t, x) \in \beta(x, u_{\varepsilon}(t, x))$. Since u_{ε} is bounded in

KI SIK HA

 $L^{\infty}((0,\infty)\times Q)$, by (H3), v_{ε} is bounded in $L^{\infty}((0,\infty)\times Q)$. There exists $\{\varepsilon_n\}$, $\varepsilon_n > 0$, $\varepsilon_n \to 0+$ such that $v_{\varepsilon_n} \to v$ and $w_{\varepsilon_n} \to w$ in $L^{\infty}((0,\infty)\times Q)$. As in the proof of Theorem [1.8 in [4], we have

$$\frac{du}{dt} = w \text{ in } \mathscr{D}'(0,\infty;L^2(\mathcal{Q}))$$

and by (2), $\|\frac{du}{dt}(t)\|_{\infty} \leq \|A\beta u_0\|_{\infty}$.

Let $j: \mathcal{Q} \times R \to (-\infty, \infty]$ be a proper lower semi-continuous convex function such that $a.e.x \in \mathcal{Q}, \ \partial j(x,.) = \beta(x,.)$. We define $J: L^2(\mathcal{Q}) \to (-\infty, \infty]$ by

$$J(z) = \begin{cases} \int_{\mathcal{Q}} j(z) & \text{if } j(z) \in L^{1}(\mathcal{Q}) \\ +\infty & \text{otherwise} \end{cases}$$

for every $z \in L^2(\mathcal{Q})$. Then J is a proper lower semi-continuous convex function on $L^2(\mathcal{Q})$ into $(-\infty,\infty]$ and the subdifferential ∂J of J is the prolongation of β to $L^2(\mathcal{Q})$ ([2]). Since $u_{\epsilon_n} \rightarrow u$, $v_{\epsilon_n} \rightarrow v$ in $L^{\infty}((0,\infty) \times \mathcal{Q})$ and

(4)
$$v_{\varepsilon_n}(t)\varepsilon\partial Ju_{\varepsilon_n}(t)$$
,
it follows that $u(t)\varepsilon D(\partial I)$ and $v(t)\varepsilon \partial Iu(t)$ a ε term

It follows that $u(t) \in D(\partial J)$ and $v(t) \in \partial Ju(t)$ a.e. $t \in (0, \infty)$. Thus

(5) $v(t) \varepsilon \beta u(t) \ a. e. t \varepsilon(0, \infty).$

By (4), we have

(6)
$$\int_{\Omega} v_{\iota_n}(u_{\iota_n}(t)-u_{\iota_n}(t-\varepsilon_n)) \geq J(u_{\iota_n}(t)-J(u_{\iota_n}(t-\varepsilon_n)).$$

By Remark 3, there exists a proper lower semi-continuous convex function ϕ defind on $L^2(\mathcal{Q})$ into $(-\infty,\infty]$ with $\partial \phi = A_2$. Let T > 0. We define $\phi: L^2((0,T) \times \mathcal{Q}) \rightarrow (-\infty,\infty)$ by

$$\phi(z) = \begin{cases} \int_{0}^{\tau} \int_{\Omega} \phi(z) & \text{if } \phi(z) \in L^{1}((0, T) \times \Omega) \\ +\infty & \text{otherwise} \end{cases}$$

for every $z \in L^2((0, T) \times Q)$. Then ϕ is a proper lower semicontinuous convex function on $L^2((0, T) \times Q)$ into $(-\infty, \infty]$ and the subdifferential $\partial \phi$ of ϕ is the prolongation of $\partial \phi$ to $L^2((0, T) \times Q)$. By (3), $w_{\epsilon_n}(t) + A_2 v_{\epsilon_n}(t) = 0$ and thus $w_{\epsilon_n} + \partial \phi v_{\epsilon_n} = 0$. For every $z \in L^2((0, T) \times Q)$,

$$\begin{split} \phi(z) - \phi(v_{\varepsilon_n}) \geq & \int_0^T \int_Q (-w_{\varepsilon_n}) (z - v_{\varepsilon_n}) \\ = & \int_0^T \int_Q (-w_{\varepsilon_n}) z + \int_0^T \int_Q w_{\varepsilon_n} v_{\varepsilon_n} v_{\varepsilon_n} \end{split}$$

By (6),

(7)

$$\int_{0}^{T} w_{\varepsilon_{n}} v_{\varepsilon_{n}} = \int_{0}^{T} \frac{u_{\varepsilon_{n}}(t) - u_{\varepsilon_{n}}(t - \varepsilon_{n})}{\varepsilon_{n}} v_{\varepsilon_{n}} = \int_{0}^{T} \frac{J(u_{\varepsilon_{n}}(t)) - J(u_{\varepsilon_{n}}(t + \varepsilon_{n}))}{\varepsilon_{n}} = \frac{1}{\varepsilon^{n}} \sum_{i=1}^{k} \int_{(i-1)\varepsilon_{n}}^{i\varepsilon_{n}} (J(u_{\varepsilon_{n}}(t)) - J(u_{\varepsilon_{n}}(t - \varepsilon_{n}))) = \frac{1}{\varepsilon_{n}} (\int_{(k-1)\varepsilon_{n}}^{k\varepsilon_{n}} J(u_{\varepsilon_{n}}(T)) - \int_{0}^{\varepsilon_{n}} J(u_{0})) = J(u_{\varepsilon_{n}}(T)) - J(u_{0}),$$

where $T = k\varepsilon_n$. By [2], $t \rightarrow J(u(t))$ is absolutely continuous and $a. e. t\varepsilon(0, T)$,

(8)
$$\frac{d}{dt} J(u(t)) = \int_{\Omega} v(t) \frac{du}{dt}(t).$$

By (8),

$$\int_{0}^{T} \int_{\Omega} v(t) \frac{du}{dt}(t) = \int_{0}^{T} \frac{d}{dt} (u(t)) = J(u(T)) - J(u_{0})$$
(9)
$$= J(u(T)) - J(u_{\epsilon_{n}}(T)) + J(u_{\epsilon_{n}}(T) - J(u_{0}).$$
By (7)-(9),

 $\phi(z) \geq \phi(v_{\varepsilon_n}) + \int_0^T \int_\Omega (-w_{\varepsilon_n}) z$

$$+\int_0^T\int_0 v(t) \frac{du}{dt}(t)+J(u_{\varepsilon_n}(T))-J(u(T)).$$

Since $\varphi(v) \leq \lim_{\varepsilon_n \to 0^+} \varphi(v_{\varepsilon_n})$ and $J(u(t)) \leq \lim_{\varepsilon_n \to 0^+} J(u_{\varepsilon_n}(T))$,

$$\phi(z) \ge \phi(v) + \int_0^r \int_\Omega \left(-\frac{du}{dt}\right) z + \int_0^r \int_\Omega v \frac{du}{dt}.$$

Hence for every $z \in L^2((0, T) \times Q)$,

$$\phi(z)-\phi(v)\geq\int_0^\tau\int_0(-\frac{du}{dt})(z-v).$$

Thus $-\frac{du}{dt} \varepsilon \partial \phi(v)$, that is $\frac{du}{dt}(t) + A_2 v(t) \ge 0$ a.e. $t \varepsilon(0, T)$. T). Since $v(t) \varepsilon L^{\infty}(\Omega)$, $\frac{du}{dt}(t) + Av(t) \ge 0$ a.e. $t\varepsilon(0, T)$. By (5), $\frac{du}{dt}(t) + A\beta u(t) \ge 0$ a.e. $t\varepsilon(0, T)$.

3. Example.

Let $\phi: L^2(\mathcal{Q}) \rightarrow [0, \infty]$ be a function with $\phi(0) = 0$ satisfying:

(10)
$$\phi(u_1 - p(u_1 - p(u_1 - u_2)) + \phi(u_2 + p(u_1 - u_2))$$

 $\leq \phi(u_1) + \phi(u_2)$

for every u_1 , $u_2 \in L^2(\mathcal{Q})$ and $p \in \mathcal{C}^1(R)$ with 0 < p' < 1, p(0) = 0.

If $\phi: L^2(\mathcal{Q}) \to [0, \infty]$ is a lower semi-continuous convex function with $\phi(0) = 0$ satisfying (10), then $A = \partial \phi \bigcap L^{\infty}$ $(\mathcal{Q}) \times L^{\infty}(\mathcal{Q})$ satisfies (HC)([4]).

Let \mathcal{Q} be a bounded open subset of \mathbb{R}^n with smooth bord Γ . Let $j: \mathbb{R} \to [0, \infty]$ be a lower semi-continuous convex function with j(0)=0 and $\tau=\partial j$. We define a function ϕ on $L^2(\mathcal{Q})$ by

(11)
$$\phi(u) = \begin{cases} \int_{\Omega} \frac{1}{2} |\operatorname{gradu}|^2 + \int_{\Gamma} j(u) & \text{if } u \in H^1(\Omega) \\ +\infty & \text{otherwise.} \end{cases}$$

Then $\phi: L^2(\mathcal{Q}) \to [0, \infty]$ is a lower semi-continuous convex function with $\phi(0)=0$ and the subdifferential $\partial \phi$ of ϕ :

(12)
$$\partial \phi = \{(u,v) \in L^2(\Omega) \times L^2(\Omega) | u \in H^2(\Omega), v = -\Delta u \ a. e. \text{ on } \Omega$$

and $\frac{\partial u}{\partial n} + \tau(u) = 0 \ a. e. \text{ on } I\},$

where $\frac{\partial u}{\partial n}$ is the exterior normal derivative([4]).

By [4], ϕ of (11) satisfies (10). Thus $A = \partial \phi \bigcap L^{\infty}(Q) \times L^{\infty}(Q)$ for $\partial \phi$ of (12) satisfies (HC) ([4]).

Acknowledgment

This paper is the second part of the research supported by the Korea Science and Engineering Foundation under the tittle "Evolution Equation of type $\frac{du}{dt} + A\beta u_{30}$ in L^{∞} (9)", 1982-1983. The author wishes to express his sincere thank to the Foundation.

References

- [1] Ph. Bénilan, Equation d'évolution dans un espace de Banach quelconque et applications, Thèse, Université de Paris XI, 1972.
- [2] H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, Mathe. Studies 5, North Holland, 1973.
- [3] M.G. Crandall and T.M. Liggett, Generation of nonlinear transformations on general Banach spaces, Amer. Jour. Math. 93(1971), 265-298.
- [4] K.S. Ha, Sur des semi-groupes non linéaires dans les espaces

KI SIK HA

de L^{*}(Q), Jour. Math. Soc. Jap. 31(1979), 593-622.

[5] K.S.Ha, Multiplicative perturbation of m-accretive operateors and evolution equations in $L^{\infty}(\mathcal{Q})$, Lect. Not. Pur. Appl. Math. 90(1984), 221-226.

Pusan National University

42