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I. Introduction
In [42, Kim and Yang defined a numerical range for the 

vlass of all numerically bounded (nonlinear) maps on a 
Hilbert C*-module, and gave some of the basic properties 
of such, numerical range. In this paper which is a conti­
nuation af [4丄 we define the numerical range for the 
numerically bounded vector fields on. the unit sphere of a 
Hilbert C*-module,and give additional properties of such 
numerical ranges. In particular we obtain an analogue of 
Lumer*s formula for the class of Lipschitz maps.

Throughout this paper we let B be a unital C*-algebra, 
B# its dual space, and X the Hilbert B-module with a 
B-valued inner productA Hilbert B—module X 
is assumed to have a vector space structure over the co­
mplex numbers C compatible with that of B in the sense 
that

X(xb) — (2x)b—x(Xb) (xeX9 beB9 2eC).

We define the norm ||,【k on X by |闵k =11〈比％〉ll*. We 
will use the following notations. Q*(X) is the vector 
space of all -quasibounded maps. 0저 (X) is the vector 
space of all B*-numerically bounded maps. L(X) is the 
Banach, space of all bounded linear operators on X. we 
■also denote the operator norm on 乙(X) by ||・||・
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2. Numerical range for nonlinear operators
If we set

TTr={(x, 7)eXxB*： ]\x\\x=\\f\\^r, /«x,x» = 11^111} 
(，〉o)

and TTo=U卩，,then each TL(r〉0) and TTo are connected r>0
subsets of XxB# with the normXweak* topology, unless 
X has dimension one over &[4]. From now。교 we shall 
assume that IT o has the norm X weak* topology as a sub­
set of Also we shall assume that X doesn't have
dimension one over R.

Proposition 2,l. JLet^： ILlX be a continuous map 
such that for (x,/)€]T0. Then z&Z*(F)
implies [기=1, where S *(F) denotes the B*-asymptotic 
spectrum of FsQ*(X)[4].

Proof. Let neZ우(F)・ Then by definition of S*(F) we- 
can find (顼侖,/„)£ JT0 such that H幻and

11(纨一F) (xtt,儿)llxW* Igllx, tv

where 咒 denotes the natural projection of XxB츠 onto 須

Hence \\F{xn9 fn) ||y—£lM"xW|z||La시lx

兀)llx+*F시lx.

Using the assumption on F,

(1一土)|比』冬同％ iix w(i+§)y “ fl,

Dividing "by \\xn\\x and letting ?z—>oo completes the prooL
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We note that the B*-numerical range Q*(F) of FeW* 
(X) is a nonempty compact connected subset of C, and 
Z*(F)드Q*(尸) (FeQ*(X)) [41 Also we recall that a Ba­
nach space (Y, ||«||)- is said to be uniformly convex, if 
whenever 為, eY, yn e Y, ||%」匡1, II)시IW1 and \\xn+y„\\ 
一>2, then ||%“ 一力 ||-»0.

Proposition 2.2. If X is uniformly convex and FeQ*(X), 
then {"@*(召)：|치=|冃*}드Z*(F), where |«|* denotes the 
seminorm on a*(X)[4j.

Proof. Let 2eQ*(F)and |시니F|*. We may assume that 

人:NO, for otherwise F=QeQ*(X), the normed space of all 
equivalence classes of B*—quasibounded maps, i. e.,

©*(X)=Q*(X)/1V(|・|*) [4]

and the result follows immediately. Since we may replace 
F by A'lF, there is no loss of generality in assuming that 
L히*=人=i.

Now, there exists (xn, /„) e „ such that

fn«Ff“)，為，〉) 口 

llxjll||/n||

as 修*。and therefore

Ji(<(%+『)(％，，，尤)，％“〉) £ ⑴

Ik시I Mil •

Since
1」11尸愆”，兀)llx > Il(7r+F)(%“，兀)Hx

' = II：시 lx

* •兀)，#“〉)|| ⑵ 
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and |Fj*=l it follows that
l|___ 全_____ 1 九!)』_>O
1 Ik시 lx gx llx s

But (3) and X uniformly convex imply

H(?r—F)(%”，>n
i反页

=o,I闵lx

Hence from (4) we obtain
d*(F) = lim inf —"(”一尸)(%, fix

，-8 TTr

i.e., leS*(F).
On W(X), the following seminorm is defined：

a产(F) = lim sup 一顷°"夂 广” ------

TR I【씨I이成Ir—8

Proposition 2.3. The multivalued function FeW^(X)—^ 
fi*(F) is upper semicontinuous, i. e., given an neighbo-、 

rhood V of Q*( F) there exists an s〉0 such, that Q*(G) 
CV for GW(X), a产(F—G)〈隹.

Proof. Suppose a)*(Gn~F)^-~9 zn£^(Gn)9 tL
We will show that 우(F). It can be easily seen that 
this property implies the upper semicontinuity of Q후 (F)・ 
By the definition of the seminorm a产(・) we find fn>0 
such that

Lf(〈G，q”)—F("f), x»| w(읏) I'xll^i/ll 

for(x, /) sJTo, 이IxWc. By the definition of a B*-num-' 
erical range we find (xn,, fn) eTTo, II务」such that

I兀(<(4声一 G“)(％”,•广，,)，％“〉)| 冬(-員)1比 IllH/nll-

Hence |/n«(z?r-F) (x„, /„), |«(F-G„) (x„, fn)„
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Xn>)\

+ l/n«(Gn —Zn?r)(xn, /„), x„»| + |zr-z|||x„||^||/n|| 
宫3+«-기)|比』派，』.

Letting 勿—8 we see that zeQ*(F).

As a consequence, the set {FeW*(X)：fi*(F) 壬奶 is 
closed in 07*(X). Also the multivalued function FeQ* 
(X)->£*(F) is upper semi-continuous.

We recall that a continuous map P：X0=X— is 
said, to be B-numerically bounded, if the map F： TT o—X 
given by F(x,f)=P(x) is B*-numerically bounded. In this 
case the numbers(o*(F), a*(F) and the B*-numerical ra- 
Trge tT^F) are denoted fay 砒門，a(P)and respecri- 
vely[4]. We denoted by W{X} the vector space of all 
B-numerically bounded maps on XQ.

Let S= {%eX： II씨x = l} be the unit sphere in X, and let 
。：S—»X be a continuous map on S, i. e., a vector field 
on S. We say that © is B-numerically bounded, if the 

map 3 (%) = ||시 1x0세씨1了%), 攵乏0, is B-numerically bounded. 

In this case we let a(S)=a($) and =Q(由)〜

If we set 卩={(攵，/) e XxB*：\[x\\x=\\f\\=f(<Zx, x» 
= 1}, then IT is a connected subset of X〉〈B* with the 
norm X weak* topology⑹.

Proposition 2.4. Let 0 be a B-numerically bounded vec­
tor field on S. Then

(a) “(0) = sup 勿〉)I.
n

(b) a(0) = inf |g(<0(")，勿〉)
IT

(c) Q0>) = {g(<0(")，u»：(u, g) eTT}-.
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Proof, (a) and (b) follow from
(幻,光〉) ||了%), *〉)

Ullill/H IIX||2||/||
=g(<0(“)，z£〉)，

where u~\\x\\^x9 g= ll/ir1/ and (w, g) eR. Now (c) be­
comes evident.

Proposition 2・5・ Let F be a continuous mapping of 
S into X, and let 고)={六〈死, %〉)：(%”) MT}. 
Then WS(F) is connected.

Proof. This follows from Corollary 3.4[6].
As a conseqence we see that 읺 (B) coincides with the 

。£_云既$^立妇丘匚011苴1££1£21 raage 區(殆 ef 
a continuous map(D：S —X.

3・ A nonlinear version of Lumer's formula

In [6] Yang proved the Lumer's formula
sup Re 昭GO Tim - "4土으幻I：二L

<s0+ a

for any bounded linear operator T on X, where WS(JT) 
denotes the B-spatial numerical range of T.

Our aim in this section is to prove a nonlinear verson 
of Lumer's formula for the class of Lipschitz maps. But 
before we do this, we are going to state an elementary 
result which is a generalization of the well known prop­
erties of the logarithmic norm for bounded linear opera­
tors on a Banach space.

Lemma 3.1 [2]・ Let F be a Banach space, and let C(Y) 
be a vector space of continuous maps /：y0=r--{0}->F 
such that IeC(Y). Let 5 be a semi-norm defined on C(Y) 
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such that l If for every feC(Y) we define
35 = lim 冬퍼Mf) 二丄_ (*)

D+ P
then the limit (*) exists and satisfies the properties：

(a) |5Z(/)|^(/).
(b) 甘 W= 通'(、「), a그0.
(c) nf+g)a〈Q+W(g).
(d) 団g).
Lemma 3.2. If PeW(X), then

sup Re Q(P)冬o/(P). (1)

Proof. From the inequality

Re 了(VW)，*〉)＜丄 { |孑(＜〔%+眼＞(%), %〉이 

11^Hxll/II 9 I伙怡 /II

— 1}, P＞0
and the obvious fact

sup Re fl(P)=lim sup Re - 사%¥)，一冬2^一
5 卩， nxiiiiiyii '

we obtain

sup Re 夂户)生」虫「+사2丄, p〉o. (2)
p

Now (1) follows, if in (2) we let /—＞()+.

On the vector space Q(X) of all quasibounded maps on
X, the following seminorm is defined：

|」P|=lim sup-顼卓丄⑶.
II引厂8 II引X -

Theorem 3・ 3. If PlX~^X is a Lipschitz map, i. e., there 
exists &〉0 such that
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(1)||P(x)—P(y) yilX/ x, yeX9

then sup Re Q(P) =(of(P) = \P\f. (2)

Proof. Since, clearly from the previous
lemma we see that it suffices to show that

|P|'Wsup Re Q(P). (3)

Let "=sup Re fi(P) and /”=sup Re 见(『；) (r>0)> where 
弗 is a continuous map given by

郊(步, »= . fyps *〉)，(％, /)eko.
Ilxll^ll/ II.

We have for (x, /) 아T, (r>0)

10—0P)(*)Hx * f(〈(I—pP、)(x、), %>)

"지" —

_[ Q 六<〔尸(幻，*〉)

IIXll^ 11/JI

三 l-p Re—您으电)，%〉)

W 1 —p sup Re 如(1・昼1一/伊, 

and using the fact lim 卩了=卩, we obtain

一10二^质所〉o, I伙 Ik 互七 (4)

for all p〉0 sufficiently small.
If we apply (1) we obtain

|lx + pP(X)Ik^Ikllx —pllP(x) 11X

^lkllx-pdlP(O)llx + 께钏X)

= (1------ IL이 lx—이 LP(O) 11%.



NUMERICAL RANGES AND LUMERS FORMULA 19

Thus, if we let 0<p〈삽- we see from this last inequality 

that we can choose ［伙 IkW，large enough so that

\\x+pP(_x) llx^r.
Hence we can apply (4) with x+pP(x) instead of x and 
obtain

11(/ -pF) (Z+joP) (x) llx^(1 -pAr) \\x+pP(x) llx,
and
\\(I+pP) (x)-pP(I+pP)(x) ||x^(l-p/zr) ||x+pP(x) llx.⑸
From (1) we obtain

II (Z+pP) (%) -pPQ+pP) (x) lh^llx||x+pll-P(x)
—=끄戒c(为)ik
WH 찌Ix+P饥%— (/+亿P) (切 x) 
=1㈣x + p2削P(*) llx.

Thus we have

II(7+pP)(*)-pF(•시-pP)(x)II+P2k 1成(%)Ik- (6)
From (5) and (6) we get

lkiix+p2^nP(x) iIxMQ-rO iu+pP(x) Ik

and hence

1+P移 I成(％)収 
llxlk

I 伙+pP0)lk .(7)

If in (7) we take the lim sup as r-^oo

we obtain 1 +p이이户匡(i_")|7+pP|,

and

匸腳>|十〃

P = 1—叩 ,
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If in (8) we let p—>0+, - we obtain (3), and this completes 
the proof.
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