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ON THE NUMERICAL RANGES AND
LUMER’S FORMULA
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1. Introduction

In {47, Kim and Yang defined a numerical range for the
tlass of all numerically bounded (nonlinear) maps on a
Hilbert C*-module,and gave some of the basic properties
of such numerical range. In this paper which is a conti-
nuation of 4], we define the numerical range for the
numerically bounded vector fields on the unit sphere of a
Hilbert C*-module,and give additional properties of such
numerical ranges. In particular we obfain an analogue of
Lumer’s formula for the class of Lipschitz maps.

Throughout this paper we let B be a unital C*-algebra,
B?# its dual space, and X the Hilbert B-module with a
B-valued inner product {,)[5]. A Hilbert B-module X
is assumed to have a vector space structure over the co-
mplex numbers C compatible with that of B in the sense
that

2(xb)=(Ax)b=x(2b) (xcX, beB, 2¢C).

We define the norm |i+lly on X by fallx =[<x,2>II*. We
will use the following notations. Q*(X) is the vector
space of all B*-quasibounded maps. W*(X) is the vector
space of all B*-numerically bounded maps. L(X) is the
Banach space of all bounded linear operators on X. we
also denote the operator norm on L(X) by {-I.
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2. Numerical range for nonlinear operators
If we set

T,={(x, fleXXB*: Ixly=lfiI=r, F(<x,x>)=lx13}
(r>0)
and TT¢=UJT,, then each T[,(r>>0) and T, are connected
T>0

subsets of XX B* with the norm > weak* topology, unless
X has dimension one over R[4]. From now on we shall
assume that T ¢ has the normX weak* topology as a sub-
set of XX B*. Also we shall assume that X doesn’t have
dimension one over R.

Proposition 2.1. Let F: T¢—X be a continuous map
sach that |F(x, f)lly=I%ilx for (x,f)eMo Then zeX*(F)
implies {z|=1, where Y *(F) denotes the B*-asymptotic
spectrum of FeQ*(X)[4].

Proor. Let zeX*(F). Then by definition of 2*(F) we-
can find (%,, f.)eT e such that jx,lly=#» and

1z~ F) (ay f) Iy

where z denotes the natural projection of XX B* onto X.

Hence 1F (%n £2)lx— s 1% lxS 2] 1%,
g"F(x;., fn)"l(_!--’l;- ”xnﬁ}(.

Using the assumption on F,

1
LA R E [ PR FEGRESYPA

Dividing by lix.lly and letting #—co completes the proof.
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We note that the B*-numerical range *(F) of FeW*
(X) is a nonempty compact connected subset of C, and
DHINEX(F) (FeQ*(X)) [4). Also we recall that a Ba-
nach space (Y, ||-fl} is said to be uniformly convex, if
whenever %, ¢ Y, 3, ¢ ¥, Ix0=1, ly.I=1 and lx,+¥.l
—2, then [x,— .11—0.

ProrosiTion 2.2. If X is uniformly convex and FeQ*(X),
then {1e@*(F):[A|=|F|*}=XZ*(F), where [«[* denotes the
seminorm on @*(X)[4].

Proor. Let 2e@*(F)and |A|=|F[*. We may assume that
2#0, for otherwise F=0eQ*(X), the normed space of all

equivalence classes-of B*-quasibounded maps, i.e.,
Q¥ (X)=Q*(X)/N(I-1*) [4]
and the result follows immediately. Since we may replace
F by A"1F,there is no loss of generality in assuming that
|Fl*=2=1.
Now, there exists (x,, f.) ¢ 7. such that
fn(<F(xn! fn), xn>)
ERIESF N

as n—oo and therefore

LK@+ F) (% o)y %.2>)

—1

—2, (D
Nl 211t
Since
jo NE, [l W+ F) (2, fa)llx
I 2 lx = Nz, llx
jf,,(<(7£'"f-F>(x,,, fn)s x’,,>)“

%

» (2)
(EME2iFA
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and [F[*=1 it follows that
“ x’l _I_ ‘F(xﬂ, fu) “ _)2. (3)
X

A BN

But (3) and X uniformly convex imply
][(”—F)(xn! fu)“X _)0' (4)

Hx!l " X

Hence from (4) we obtain

d*(F) = lim inf ]i(?f——F)(x, f)“x ={
e T, 121t x ’

i.e., le*(F).
On W*(X), the following seminorm is defined:

@*(F) = lim sup |f(< Fla, ), x> - -
B el Zns I

Prorosition 2.3. The multivalued function FeW*(X)—
2*(F) is upper semicontinuous, i.e., given an neighbo-
rhood V of 0*( F) there exists an ¢>0 such that 0*(G)
CV for GeW*(X), o*(F—G)<e.

Proor. Suppose w*(G,.—F)é%, 2,eQ*(G,), 2.z
We will show that zeQ*(F). It can be easily seen that
this property implies the upper semicontinuity of O*(¥),
By the definition of the seminorm o*(.) we find ¢,>0
such that

IH(KGa(x, )= F(x,£), ) (5 1aiuf

for(x, f) €Mo, Uxllx=c.. By the definition of a B*-num-
erical range we find (x,,. f.) €¢o Ix,lx=2+c¢, such that

(2 =G,) (%, £2), 2] S CE )15, 13Nl
Hence |f.(<(28~F)(Zay fu)y %)l ful<C(F—G) (%ay i)
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X))
Hf (G2 (%ay ), 2a2) 4|2~ 2} 12031 f A
< (5 + 12— 2D Iz 1 £ 1.
Letting #n—co we see that ze0*(F).

As a consequence, the set [FeW=*(X):0%(F) #¢} is
closed in W*(X). Also the multivalued function FeQ*
(X)->5*(F) is upper semi-continuous.

We recall that a continuous map P:X,=X—{0}—-X is
said to be B-numerically bounded, if the map F:T,—~X
given by F(x, f)=P(x) is B*~numerically bounded.In this
case the numbers w*(F), a*(F) and the B*-numerical ra-
nge Q*(F) are denoted by (/), «(P) and G(#) respecti-
vely[4]. We denoted by W(X) the vector space of all
B-numerically bounded maps on X,.

Let S={xeX:Nxly=1} be the unit sphere in X, and let
®:S—X be a continuous map on S, i.e., a vector field
on S. We say that ¢ is B-numerically bounded, if the

map @(x)=ixlld(lixil}'x), 0, is B-numerically bounded.

In this case we let w(9)=w(9), a(9)=a(d) and (o) =0(3).

If we set T={(x, f) ¢ XXB*ixlx=lf1=f(<x, £>)
=1}, then T is a connected subset of XxXB* with the
normXx weak* topology[6].

ProrosiTioN 2.4. Let © be a B-numerically bounded vec-
tor field on S. Then

(a) w(@) = Sﬁp (g(<D(n), u>)]|.
(b) a(e) = iﬁf [g(<o(w), u>)|.

€y () = {g(<Co(w), u>):i(u, g) M}~
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Proor. (a) and (b) follow from
FI<P(x), 2>) _ F(<xfixeiizlix), x>>)
[EZ I nxhZifn
=g(<o(u), u>),

where u={xl;!x, g=7I"f and (%, &) ¢[T. Now (c) he-
comes evident.

Prorosition 2.5. Let F be a continuous mapping of
S into X, and let Wp(F)={f(<Fx, >):(x, ) eT}.
Then W,(F) is connected.

Proor, This follows from Corollary 3.4[6].
As a consegence we see that 0(¢) coincides with the

—

clasure-WW;{2) of the-B-spatial numerical range W,(¢) of
a continuous map ¢:5 —X.

3. A nonlinear version of Lumer’s formula

In [6] Yang proved the Lumer's formula

sup Re W,y(T)=lim "I"“gT““I

o+

for any bounded linear operator 7 on X, where W,o(T)
denotes the B-spatial numerical range of 7.

Our aim in this section is to prove a nonlinear verson
of Lumer’s formula for the class of Lipschitz maps. But
before we do this, we are going to state an elementary
result which is a generalization of the well known prop-
erties of the logarithmic norm for bounded linear opera-
tors on a Banach space.

Lemva 3.1 (2]. Let Y be a Banach space, and let C(Y)
be a vector space of continuous maps f:V,=YV—{0}-Y
such that JeC(Y). Let 6 be a semi-norm defined on C(Y)
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such that 6(f)=]1. If for every feC(Y) we define
-0+ P
then the limit (*) exists and satisfies the properties:
(a) [0/ (=a(f).
(b) & (uf)=ud"(f), r=0.
(c) " (f+e)=d"(f)+8 ().
(@ 3" (- (DI=é(f—g).
Lemma 3.2. If PeW(X), then

sup Re @(P)=a (). ()

Proor. ¥From the inequality

Re L(CP@s 4>) 1 ( 1f(<xtpP(x), 22)]
llac i 2117 1 e Ixi2 £l

--1}, >0
and the obvious fact

sup Re 2(P)=Ilim sup Re JS(<P(x), x>)
e, e 200 ’

we obtalin

sup Re o(Py= ¢ £e0-L p>o. 2)

Now (1) follows, if in (2) we let p—(*.

On the vector space Q(X) of all quasibounded maps on
X, the following seminorm is defined:
|P|=lim sup-ITelx 31,
"x“,\q‘) leﬂx

Treorem 3.3. If P:X—X is a Lipschitz map, i.e.,there
exists £>>0 such that
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WP(x) — P(y) ixSkile—yilx, %, yeX, (1)
then sup Re o(P)=a’(P)=|P|". (2)

Proor, Since, clearly o’(P)<|P}, from the previous
lemma we see that it suffices to show that

|P|’<sup Re g(P). (3)

Let g=sup Re @(P) and g,—=sup Re ¢,(17,) (#¥>0), where
¢r is a continuous map given by

0r(x, )=—TCLPE) 422) £y e,
N 201 0.
We have for (x, f) T, (r>0)
WI=pPY ()l | F<UT=pP)(x), £>) |
1] | WS

:]1_,, F(SP@), £>)
EF EIFa

>1—p Re F(<P(x), x>)
[EAH R

= 1—p sup Re ¢.(1[)=1—pp,

and using the fact lim g#,=—pg, we obtain

Too

n(I—ﬁ)(x)!!x =1—pu,>0, lxly =7, 4)
X

for all p>0 sufficiently small.
H we apply (1) we obtain

x4+ oP(x) 1x= Uz lx— eI P(2) lx
ZHxx—e(IP(M Iy +ERIxlx)
=(1—kp) izl y— 211 P(0) llx.
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Thus, if we let 0<(o<y we see from this last inequality
that we can choose iixlly=7 large enough so that
lx+pP(x)Ix=7.

Hence we can apply (4) with x4 pP(x) instead of x and
obtain

W —pPYT+pP)(x) x=(1—pp) 12+pP (%) lix,

and
T+ pP)(x)—pP(I+pP)(x) x=(1—pe) Ix+pP(x) x. (5)
From (1) we obtain

I+ pP) (%) —pP(I4pP) (%) Ix=lixlix+ oI P(x)
—PI4pPy (x) y
Sl +pklx—(f+pP) (xlx)
= x|y + p*RIP(x) i

Thus we have
W(I+-pP)(x) —pP(T1-pP) (2)Ix =M% lix +02RI1P(£) lix. (6)
From (5) and (6) we get
Il Nx + 2RI P () e = (1—pre) Nx+ p P (%) lix

and hence
op MNP~ g fix+pP{x) lix
I+pk——y —= (1—em) il - (D
If in (7) we take the lim sup as r—co
we obtain 1 +p2k|P|=(1—pw)|I+pP,
and
| f4+pP}—1 = pk| P|+ . (8)

) = 1—pu
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If in (8) we let p—0*,- we obtain (3),and this completes
the proof.
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