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Better Estimators of Multiple Poisson
Parameters under Weighted Loss Function **

Kim, Jai Young*

Abstract

In this study, we consider the simultaneous estimation of the parameters of the distri-
bution of p independent Poisson random variables using the weighted loss function. The
relation between the estimation under the weighted loss function and the case when more
than one observation is taken from some population is studied. We derive an estimator
which dominates Tsui and Press’s estimator when certain conditions hold. We also derive
an estimator which dominates the maximum likelihood estimator(MLE) under the various
loss function. The risk performances of proposed estimators are compared to that of MLE
by computer simulation.

I. INTRODUCTION

Let Xq,-ees Xp be p independent Poisson random variables, where X; has parameter Aj, i=1,...,p.
Recently, considerable research has been devoted to the problem of finding better estimators of the
A than the MLE under the loss function, ‘

L 5,0 = 2 5N 09k, k=12, ...
i=1

In this paper, we consider the more general case where more than one observation may be taken from
each population. It is possible that there are some situations in which more than one observation

is taken from some of the populations. Suppose that X;, ,.’..,Xini, n>1,i=1,..,p, p>2, are observed
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from the ith Poisson distribution and that all the Xij’s are independent. Consider the sufficient statis-
tics '

nj
Xi - “—_-El Xij,l - 1,....,p,

which are independent Poisson with means nl)‘l ,..,np)\p,respectively. In many Poisson applications,
this happens. For example, X; is the total number of failures of component type i in n; time periods

X
E[
i=1 ni

If the n;’s are not equal, then the risk of the MLE becomes a weighted sum of component losses of
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Suppose X; follows Poisson (), i=1,....p, p=2. Find an estimators § of A such that § dominates the

MLE X=X;,..., Xp)'under the generalized loss function

Since X; follows a Poisson distribution with parameter nA;, we consider the following problem.

c - < 2 k
Lk 8\ = i=21 ci(Si—)\i) /(7\1) R ci>o. k=>1.

Then 5(X) dominates the MLE (X /ny .. ,Xp/np) under the loss function

ITCRVE 3 (3; — W IOK.

i=1

For the simultaneous estimation of p independent Poisson parameters, the generalized loss func-
c
tion L is considered by Tsui and Press(1982). Their estimators which dominates the MLE under
the loss function L:'( are defined componentwise as -

sTPX) = Xk(p-) v/ ey - X s+ x{khi=1,.p,

where (1) 1)~ minimum (¢; },

@) X = XX 1) oo (X kHD),
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. p .
(3)si= % (Xj+k)(k)—(Xi+k)(k),
i=1
The risk improvement, R(X\) - R(5TP, X), is at least

E [c(l)kz(p—l)"’/ i=§1 (xi+k)(k)] :

II. DERIVED BETTER AND MINIMAX ESTIMATORS

The shrinkage terms of §TP always depend on the smallest weight c;. If cyis relatively small

compared to the other Cj’ j=2,....,p, then the shrinkage terms corresponding to cj’s, j=2,u..,p, are al-
most zero. Thus the estimators which correspond to CysmnnnCp  ATE almost the same as the MLE.

In this case, no significant improvement in risk would be expected by using the estimators §TP
Ifcy is relatively small, then the amount of loss corresf)onding to ¢y does not affect the total loss.
It is natural to find an estimator which removes the influence of extreme weights.

In the next theorem, we derive an appropriate estimator 51 by modifying §TP o give good risk
reduction even when there are extreme coefficients. It is shown that 5! dominates 5§ "X under L; for

p=4, when some conditions hold on ¢;, i=1,...,p.

Theorem 1

Let Xi ~Poisson(>\i),i=1 ,-»Ps P=4, where the Xi’s are mutually independent.

p-1
Let D =(c;: (p-DWep +V)<2 2 Vo, 2<p-2) (1)
=1
andletj_*=max{j:cjeD}.
Let ¢ = ¢ ifD=¢, 1<i<p
= ¢ ifD=¢, i=1
= ¢ ifD#¢, 2<i<j*
= ¢q*  ifD#0, *<i<p.

Define 8(X) = X; —v/c] / ¢; - £(X), i=1,..p,
where £,(X) = k(p~1)X{y(s! + x(K)),

Let §°(X) be the MLE.
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Then 6! dominates 5 T (and necessarily s9 Junder the loss function Lli .

Proof
Let E [Afrp] = R(5TP,\) — R(59, 1) under L; and

let E [Aj] =R, 0) - R, \) under L.

= 2 ok2p-12 (o®(s?) —2k(p-1) zpl Were/Xp-nEy a0 @

[o4
Ap = 2

—-

_ (Xi+k)(k) (Xi+k—1)(k)
where AX) = (T - Si + (Xi+k—l)(k) ’

After some calculations, we have

A;p = iE;:011<2(p—1)2(Xi+k)(k)/(sz)
~2k%(p-1) z Vv Clci(Si/(S (St+ (Xi+k—1)(k)))-
i=1
Similarly,

S = 2 -1 e

A1
_ok2(p-1) £ / cier (S(S - (st(X+k—1) ),
i=1

Now we have
L *
8= 07 = K- = ((e-c)) 1) (0%
-2 izpl e~ \/C_lr )V Sis -(Si+(Xi+k__1)(k))))}
p D enow®owe -Vehves

>KXp-1) 2 | &

(3)
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Note that the second term of (3) is nonnegative and
(5% = () - (SH(Xrk—1)X).
We need to show that

2 (o1 (-1 (X100~ 2v/5 (/] ~ /) -850 forall X, (5)

i=2

Let G(X, c) be the LHS of (5), then

G(X,¢) = i=2pl (Xi+k)(k) (-1) (51 -¢f) - 25?' (\/c_l—— vV C}'= )\/?).

Let H(c)

(- (e=cp) =2 = Vo ~VeHVe)
min ( (p-1) ;=0 ) ~2p 2 ey = V) Ve ©)
‘ -

We need to show that H (c) is greater than or equal to 0.
H() = (p-1)(ej—cp)—2 z Wep —VVe -
*p
Let c; = s then

H (c)

-1 k-1
-0 @502 % (Vo —VEIVE-2 T Ve VIV

-1 k-1
Ve -VE)@-DVE +VE) - T Ve -2 T (Ve -ViVe
>0 (sincev/cy —+/cp <0and (1))

If p=2or3orD=¢, then §1(X) is the same as the 8TP,

The next example gives an application of Theorem 1 for multiple observations per Poisson
population under the loss function L.

X



Example 2
Let x.]. ~Poisson O‘i)’ i=1,....,p, =1, s n;, and where the Xij’sare mutually independent.

n
Let X; = ’;21 and let nl\n2<....<np.lBy putting ci=ni-l, let
§
D =¢{ n : -1 l/np+\/ I/nj)<2 Z vV 1/ng },and
k=2
j# = min{j:n;eD}.

]

Define 8,(X) = Xjfn; —/ni/n(1/n) (p-DX/(Z+p-1) (1)

where (1) i=1,...p,and

(2) n.f =1, ifD=¢ 1<i<p
= M ifD#¢ 1 <i<je1
= ifD#¢  ja<i<p-2
= np if D # ¢, p—-1<i<p.

Then § (X) dominates the MLE (Xllnl,....,Xp/np) under the loss function L.

The previous estimators, 5TP and 51 , have the form X;—g;(c)f; (X), where the fi(X)’s are decided
under the loss function Lk' In the next, we construct a class of estimators which dominate 50 under
the loss function Lﬁ using a different form of an estimator. What we want is;

(1) Estimators which eliminate extreme weights automatically.
(2) Estimators which are robust with respect to loss functions. (i.e, if an estimator 5(X) dominates
50 under L then §(X) also dominates’ 59 under LS,

k' (#k).
(3) Estimators Wthh reduce to the previous estimators under the loss functlon Lk when cL= =Cp-

First consider the estimators which have the form

hy(X)
ﬁi(X) = Xj— W( N )‘lY—)‘)() =1

where w;(c, X) > 0. The next theorem defines an estimator 52(X) which dominates ° under the loss

function L; for p=2.
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Theorem 3

Suppose X{’s are as given in the Theorem 1. Define the estimator of A as

2 x{®)

where (1) i=1,....,p,and

Mn—.

C.
=1 3

2 wile,X)=k((p-1) -G - ).

S

Then 82(X) dominates 8 under the loss function L;

Proof
Let D} = R(62,) — R(8°,2) under L.
We have
D, = E[ iz}:pl{ ciwf x+k)(K) / (s2)

~2ew((XHK)/S — X, (SH(Xk—1)Kh) 1]

<E[ zzpl (ciwiz X;HO®)_2kew.8h/(s2)]

We need to show that

ciw.2<2k 2 c;w. foranyi.
i i 1

After some calculations, (9) is
i-1 2 j-1
(cfp—i) + T ¢ ) < 2¢ Z((p—j)e;t Z cp).
k=1 i I a=g M
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Let A(c) denote the LHS of ( 10 ) and B(c) denote the RHS of ( 10 ), respectively.
Then

j-1 j-1
B(c) = 2¢;y Z —j)e:+ T c )t Z —j)e: + T ¢
(c) 1{m_q((p e z o HKKP(@ e RN

>2{ E ((P—J)CC + 2 ) + ((p—)e; + 2 ) (e (p-i)y. (11
i j-1 . =1 D
Notethat I ((p—j)c;+ = cp)Z((p—i)c;+ Z ¢ ) for j>i,
n=1 J n=1 k=1
and also note that

p ((p—J)cc+ T Y
1€j<i n=1

i1
= Z — it > .+ (i—1) c.c.
1< l{(P 1) it Z oo (i—j) cicj }

1€j<i n=1

i-1
= (p-i)c; 12 c.te, T 2 h +(1-])c)
P lj=l ] 1

) i-1
>((P”‘i)°i + zl CJ) '(Cl+02+..+ci-1)- (12)
i=

Substituting (12) into (11), we have

i-1
B(C) =2 {((p—i)c; + Z ck)( E ck)+((p—1)c + 2 ck)(c -} (13)

= 2A(c).

So the inequality (9) is-proved.

82(X) has the following properties:
i-1
(1) If Cyis relatively large compared to = G then the shrinkage term wi(c’ X) involves
j=1
k(p—i) instead of k(p-1). This guards against the effect of extreme coefficients.
2) 1If €1 then the shrinkage terms of 52 under L® are the same as the ones of the estimator

k
under Lk'
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The estimators, s1 and 62, have different shrinkage terms depending on the loss functions Lli

Focusing on the problem of robustness with respect to loss functions, the estimators of the
form ’

8.(X) = X; —w(c, X)Xy, i=1,..D, (14)

where w(c,X) > 0,are considered under the loss function Li.

The next theorem gives a condijtion on w(c,X) for the estimator 53 to dominate 89 under Li.

Theorem 4

Suppose the X; are as given in Theorem 3.
Define the estimator of A as

53(X) = (1-w(e, )X,

. P
where (1) w(c,Z) is a real valued function, Z = Z X,
i=1

) w(c,Z)w(c,Z-1) = (Z-1)/Z for Z>1 and

p 14
z o Z g
i=1 i=1
B o<sw<( —D/@Z+—=1). (15)
“p “p
Then 63(X) dominates 89 under the loss function Li.
Proof
Let D‘; = R(5,\) — R (62, \) under Li.
c _ p -1 .
Then Dy = Bx[ 2oy WX 2w (XM - (16)
l=

By using the reparameterization method,

P
D; = B[ T co]l{(wP-2w) (27-2) + 2wAZ) 6% + (w2-2w) Z6,} ]
i=1

E(AT {((wh-2w) @’ -2)+2wA2) Epciei+(w2——2w)Z ) c})
i=1 i=1
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= BIAT( Zop{wP-aw) (22—2) + 2wAZ) (-

)+ (wlaw)z} ]

i=1 5
i=1
Using condition (2), we have
E[w-Z2—wAZ] >0. a7
Using this result (17), we have
P
P z 0101
!
D‘l’ <E[AT( 2¢) { WAZP-2)+2wD) (- ——)+ (w2-2w)z }]
ot
' > ¢

i=1

<E[AT( _5: e { (w'z(zz_z) +2w2) (e, | :zpl ¢) +(wWP-2w)z} ].

| %
Since cp = max {ci} and X 6;=1, we have
i=1

c 1, P 2 P P '
D <E[A” ( iZz1 Z) {w (-1 (cp/ i=z‘ c*l) — 2w(l—cy/ izzl )}l
<0. (by condition (11))

The next theorem shows that the dominating estimator 63(X) under the loss function LS also

c
dominates under the loss function Lk(>1)' This gives the robustness of the estimator §3(X) under

the variety of loss functions.

Theorem 5

3 . i 0 R c
5°(X) dominates the MLE(8") under the loss functions Lk 2y

Proof

Let Di = R(53, A) —R(5°, M) under the loss function L](i .

From(17),
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P ] i=1 11
D¢ = By (AR (2 o) [ (wP2w) (22-2) + 2wAZ) (——)
ko =1 b P 1k
+ (w2—2w)Z }]
_ .
0 z cieiz k
- i=1
<EAKR( 2 o™ {wi2zi-2yr2w2) (Lp—~—) +(w2wW)Z}].
i=1 1%
R

p p i
z cif)i z cif)f k
i=1 i=1
( ) =( ) fork=>1. (18)
p p c0_1-_k
i=1ci i=21 H

2‘5 c;0
Z ¢
pf < EfA%( T e ) { wWAE2-zyrawz) ( ”: )+ (w22w)Z }]
i=1 5 Ci
i=1
<0 (by(17)). (19)

Remarks:

) It °p is much greater than the other  ¢’s, i=1,....,p-1, then 53(X) is the same as the MLE,
Intuitively, we would not expect an improvement in risk over the MLE. Because we know that
the MLE is admissible for p=1.

(2) Proper Bayes minimax estimators derived by Clevenson and Zidek(1975) under the loss func-

tion L, are defined as

6CZ = (1-(@+p—1) / (Z+&+p—1))X, where  1<8<p-1.

p
IfR+p—-1<2( X ci/cp—l), then 8> contains the proper Bayes minimax estimator sCZ,
i=1
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III. SIMULATION RESULTS UNDER Lf

In this section, the results of the computer simulation are described. We compare the risk
performances of estimators STP, 61, 62, and §3 under the loss function Li, where

P p
Wie,Z)=( i=Zl ci/cp-l) [(Z+ i=21 ci/cp—l)

is used for 53(X). The procedures of computation are describes below:

(1) The number of independent Poisson random variable were chosen(p=>5).

(2) The parameters \; were generated uniformly from the intervals (0,3) and (0,6).

(3) Observations from each p independent Poisson distributions were generated 500 times.
(4) The average loss under the loss function L‘; of each estimators was calculated.

(5) The percentage reduction of average loss(PRAL) over MLE was calculated.

(6) The procedure was repeated 3 times and the average PRAL was calculated and tabled.
(7) The measure of difference among ci's is defined as

Diff. = ( 7 ¢)/P/( zpl ¢;/P).
i=1 i=

In most cases the percentage of risk savings is seen to be an increasing function of p, the number
of independent Poisson parameters. Also, we see that the risk improvement percentage over the
MLE decreases as the range of ~ A;’s increases. &! has considerable appeal since its improve-
ment in average risk is largest among dominating estimators and 5! dominates STP under the loss

function L]i by Theorem 1.

Table 1. Considered Cases on C;, i=1,...p

Number of .
Cases | Parameters coley ¢/ cqleq | eslc ~ Diff,
case 1 5 1 1.5 2 2 0.95
case 2 5 2 3 4 5 0.87
case 3 5 3 6 0 11 o 0.74
case 4 5 4 6 29 35 0.50
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Table 2. PRAL over the MLE under L

for p=5 where Ae(0,3) t

Cases 51F §4 8 8Y
Case 1 35 35 34 35 35 34 35 35 34 34 34 34
Case 2 29 23 28 36 29 35 33 26 32 31 25 29
Case 3 16 22 23 24 33 34 23 30 31 21 29 29
Case 4 13 10 14 26 31 28 21 17 22 19 16 23

The first PRAL in each cell is based on A=(0.4,0.6,1.1,1.2,2.6).

the second is based on A=(0.5,1.4,2.1,2.5,2.9) and the third is based on 2=(0.1,0.5,1.2,1.42.9).

The parenthetical values are the averages for the three sample PRALs in the cell.

Table 3. PRAL over the MLE under L

for p=5 where Ae(0,6)

Cases sTF 84 8° 56
Ca_sel 20 20 16 29 20 16 29 20 16 28 19 15
(Diff=0.95) (22) 2) 22) 1)
Case 2 12 16 23 i6 19 27 14 17 25 13 15 24
Ca§e3 10 12 17 14 16 24 13 15 22 12 14 22
Case 4 11 7 6 21 14 12 16 11 10 17 10 9
(Diff=0.50) ®) (16) 12) 12)

The first PRAL in each cell is based on A=(0.2,2.1,2.4,4.6,5.3).
The second is based on A=(0.1,1.4,3.8,4.5,4.8) and the third is based on A=(0.1,0.2,1.7,3.0,3.8).
The parenthetical values are the averages for the three sample PRALs in the cell.
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