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Abstract

This paper examines the influence of the uncertainty in demand and lead time on the relative per-
formances of ten well-known single stage lot-sizing rules in a rolling schedule environment. Two other
factors, coefficient of variation and time between orders, which may affect the performances of the
rules are also considered. To compare the rules under an identical condition, 100% service level is set
by introducing safety stocks.

» The effects of various factor levels are checked statistically by the pairwise t-test and the results
show that the uncertainty of the environment has a strong influence on the performance of the rules.

1. Introduction

Lot-sizing problem is basically to convert a forecast of component requirements into a series of
replenishment orders, This involves determining how to group the time phased requirements into a
schedule of replenishment orders which minimizes the inventory related costs. To solve this problem,
a number of lot-sizing procedures have been proposed. Also, many comparative studies on these pro-
cedures have been proposed. Also, many comparative studies on these procedures have been under-
taken. But most of these experiments assumed the constant lead time and so there is little guidance
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for an inventory manager who has to consider the uncertainty in lead time.

Thus this paper intends to compare the performance of 10 well-known single stage lot-sizing pro-
cedures under the uncertainty in both demand and lead time. For the experiment, performance data
of 10 weli-known rules are gathered for each case generated by combination of four factors, i.e., fore-
cast error, lead time, time between orders, and forecast demand variation. From this experimental
results, a manager could get some assistance in selecting a lot-sizing procedure under ihe uncertain
environment of his industry.

Section 2 discribes the experimental factors and design. The results are analyzed in section 3.
Finally section 4 discusses findings from this study. '

Literature Survey

A number of comparative studies of single stage lot-sizing techniques in a discrete time system have
been carried out (1, 2, 3,4, 7,8, 10, 11). In all cases, simulation has been a common research tool.
Previous studies can be categorized as to whether a finite horizon or a rolling schedule environment has
been used (static or dynamic situation), and whether demand uncertainty has been present or not.
Note that all these studies assumed that the lead time is constant.

Berry (1) proposed a framework for comparing lot-sizing procedures based on two ctiteria, in-
ventory related cost and computing time, And he gave an example of performance comparison of four
lot-sizing procedures — Economic Order Quantity, Period Order Quantity, Part-Period Balancing (FPB),
and Wagner-Whitin algorithm (WW). He considered two factors, the coefficient of variation of demand
and the time between orders, Finally, Berry proposed three criteria, i.e., inventory cost performance,
computational efficiency and procedural simplicity in choosing a lot-sizing procedure. Blackburn and
Miller (2) investigated the effect of demand variance on cost performance of three lot-sizing tech-
nigues, WW_ Minimum cost per period technique, and PPB. They showed that the performance of lot-
sizing procedures studied are influenced by the lot-sizing index (i.e., cost parameters) and the demand
variance. Besides these studies, Groff (4), Silver and Meal (8), respectively developed heuristic lot-
sizing rules, and presented results of comparative experiment. Blackburn and Millen (3) studied the
impact of a rolling schedule implementation on the performance of three single stage lot-sizing rules,
PPB, Silver-Meal (SM), and WW_ The main finding was that the SM heuristic outperforms the WW
method in terms of average cost performance when the forecast horizon is less than 2 TBO-1 for all
conditions examined and up to 4 TBO in some situations.

Wernmerlov and Whybark (11) presented results through a simulation evaluating fourteen lot-sizing
procedures, Their study included the forecast errors, CV, TBO, and constant lead time as factors of
the experiment. [t was shown that the introduction of demand uncertainty not only changed the rank
between the lot-sizing rules but also the character of this ranked relationship.

2. Experimental Design

The experimental design in this study is similar to those described in Wemmerlov and Whybark (11).
The single-stage lot-sizing rules included in this study are as follows:
EQQ, Period Order Quantity (POQ), Discrete EQQ (DECQ)(7),
Silver and Meal Procedure (SM)(8), Groff’s
Marginal Cost Rule (GMR )(4), Part-Period Balancing (PPB)(6),



PPRB with Look-ahead and Look-back Procedure (PPBLAB) (6),
Least Unit Cost (LUC){6), Lot for Lot Ordering (LFL){6),
Wagner and Whitin Algorithm {WW) (9).

Four factors which may affect the performance of the rules are considered and they are the coef.
ficient of variation (CV), time between order (TBO), lead time (LT), and standard deviation of forecast
error (o, ).

CV is a device for measuring the lumpiness of data and is defined as the ratio beiween the standard
deviation and the average of demand per period. The larger the value of CV is, the greater the variations
among each period’s demand are. In this study, the expected number of demand per period is assumed
to be 100. Demand is forecasted by the use of uniform distribution with three levels of CV, and

level 1, CV =0,
level 2; CV =0.57,
and level 3; CV =175,

For instance, to achieve 1.75 CV, a two step procedure is used to generate forecast demand as
following;

~ (0.3 for X=1
D )= {07 for x=0

1/539 for 64 <d, <603

2 IX=1) = (
) el ) 0 otherwise
where d is the forecast demand for the t-th period.
Then, E(d;) = 1005
Var(d,) = 30629.7
and CV=175.

The relative performance of a rule can be influenced by the value of the cost parameters in the
objective function. The important parameters are the unit holding cost h per period and the ordering
cost §. The ratio between these two can be identified by TBO= (ZSfdh) where d is the average period
demand. TBO also indicates the frequency of placing an order. Two levels of TBO are chosen and they
are

level |. TBO=2(5=100and h=0.5)
and level 2. TBO=6(S=900and h=0.5).

The uncertainty of lead time plays an important role in inventory management and the performance
of a lot=sizing rule is expected to differ with the degree of the uncertainty of lead time.
Let L, indicate the LT at the period t and 0?_ the variance of LT. Four different kinds of lead time
distributions, each with E (L;)= 3, are used and they are:
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case . ai =2
02 forL,=1,2,3,4,5
Prob(L,) = 0

otherwise

case 2. oi =1

0.1 forL, =1,5
Prob (L,) = 02 forl, =2,4

04 forkL, =3

0 otherwise

case 3. oi = 0.5

Prob(L,) = 0.25 forL, =24
05 forL,=3
0 otherwise

-
case4. o] =0
L, =3 for all periods.

Normal distributions with zero mean are used to generate forecast errors. These etrors are used to
find the actual demangd of a particular period by subtracting the error from the forecasted value. Three
levels of standard deviation of error g, are used for this study and

level 1; g, = 0 per period,
level2; ¢, = 30 per period,
jevel 3; o, =60 per period.

Therefore, a full factorial design is used with 4 factors, ie, CV, TBO, LT, and ¢, having 3,2, 4, and
3 levels each and 72 cells are generated. Each rule is applied 10 times for each cell. Thus, a total of
7,200 total cost data are recorded. Each rule is applied 0 a same set of data in each replication.

Since shortages can occur due to the uncertainty of demand and lead time, different service levels
might result from different lot-sizing procedures. The situation would make the comparison of the
rules quite complicated and one way of avoiding this difficulty is maintaining an identical service level.
In this study, almost 100% service level is pursued by introducing safety stocks and the performance
measure becomes the sum of the inventory ordering and holding costs over a finite horizoa,

The performance of each lot-sizing rule is expressed relatively in terms of those by the WW which
gives an optimal solution in deterministic environment and finite planning horizon. Let PI (k, j) be the
relative performance index of the rule k at j-th celt and TC (k, J, i) the total cost of the rule k at j-th
cell in i-th replication.

Then

PI(k,j) = ,1201 [TC (k. i. i) — TC (WW,j, 1)) / [10 + TC (WW, j, D}
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* The simulated lot-sizing takes place on the length of 330 periods for each experiment and the first 30
periods are taken as a start-up period to assure the stability of the simulation process. The data
obtained from the remaining 300 periods are used for the calculation of the inventory cost. Following
the suggestions of Ludin and Marton (5), 30 periods are taken as the forecast horizon. For every
period, the net requirement 1, of a period t is calculated where

I, = dt + dt+l +... % dt+E{L) + safety stock — inventory on hand and on order,
When r, becomes negative, no order takes place. Otherwise, lot-sizing takes place over the forecast
horizon and only the first ordering is made. The order arrives at a predetermined period t + L. Figure
1 shows the experimental procedure taken in this study.

3. Results and Analysis

The results of the experiment are provided in table 1. These data are the average of Pl in percent
obtained for the case of oi = 0, the average PI of each rule is based on N = 180 observations, ie., (3
levels of CV) » (2 levels of TBO) + (3 levels of forecast error) + (10 replications). The introduction of
the uncertainty in LT influences the relative performance of each rule. All the rules except POQ, LFL,
PPBLAB, perform better than WW.

Table 2 shows the influence of the uncertainty of LT when forecast errors do not exist. The per-
formance of LUC, PPB, GMR, and SM worsen relative to WW while POQ and LFL become improved
as the variance of LT increases from 0.5 to 2.

Table 3 shows the results when uncertainty is not present, i.e., g; =0 and o, = 0. The ranking of
the first three rules, WW, GMR, and SM, are the same as those in Wemmerlov and Whybask’s study.

Table 4 provides the ranked results for the case when uncertainty in demand and lead time are
present. Comparison of the results in table 3 with those in table 4 indicates that the existence of the
uncertainty in LT has a remarkable impact on the performance of DEOQ, LUC, EQQ, WW, and
PPBLAB. DEOQ and LUC rank on the best two tules and WW and PPBLAE worsen,

The overall performance of each rule based on 720 observations are described in table 5. DEGO,
GMR, PPB, and LUC are evalvated better than WW and compared to those in table 3, LUC, WW, SM,
and PPBLAB have distinctive changes in ranking. In particular, the rank of DEOQ changes 1 from 7,
LUC 4 from 8 and WW 5 from 1. Pairwise t-test with 5% singificance level are used to analyze the
results statistically. Significance testing on the first five rules in table 4 based on 360 observations per
rule indicates that DEOQ is different from the other rules and that no significant differences between
the remaining four rules exist.

Comparison of this test results with those by Wemmerlov and Whybark suggests that DEOQ per-
forms statistically better relative to the other rules when the uncertainty of lead time is introduced in
addition to forecast error.

Table 6 shows the test results of the effects of various factor levels on the relative performance of
the rules. As an example, for TBO with two levels, two groups with 360 observations each are used.
The results indicate that varying the levels of TBO and CV have no significant effects while the in-
troduction of demand uncertainty somewhat matters.

Lead time uncertainty has significant effect on the performances of the rules, while varying the
levels of the uncertainty have not much effect.
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Cenerate the forecast demands (d,)
t=1,2 ..., T
where T = forecast horizon.

+

Generaie the forecast errors (gy)
t=1,2, .. T

+

Calculate the actual demands (a,)
a, = Max {d, — &, 0)

t=1, 2, ... , T
¥
Adjust 2;, such that ay = dt
x
Generate the lead time (L)
t=1,2,...,T

r----*< Fort=1,2,...T S - - -

Calculate the net requirements during
the mean lead time {r,)

p=d tdgy b +dy.p Ly +safety stock
— inventory on hand and order

No

r,>0
?

Yes

Calculate the order quantity using
each lot-sizing rule

Calculate
safety stock

Shortages >0

]

Calculate P1 for each rule

!

END

Figure 1. Flow of the experimental procedure.
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Table 1. Average Pl in percent

Rule
Level EOQ DEOQ POQ| LFL LUC PPB PPBLAB GMR SM
Factor
qw =2 ~1446 | —3.100( 0629 (14,162 | —1.130 [—0.754 | 6.063 —-0.623 |—0.049
LT QW =1 —0068 | —2.327 3206 [i8812 | —0.773|—-1.152] 7.911 —0.695 [—0.794
qw =05 | -0414 | —3.500 | 7.909 |24.331 | - 2.538 [ -2.524 | 8.593 ~1.349 |- 0950
qw =0 [122.894 4.140 | 8.448 |76.237 4218 2.537 | 4.092 0.147 1.892
0 73.756 | —0.014 [ 4961 (41.109 2.416 0492 | 6754 —0.427 1.323
g
Zmn 240 30 12.024 | — 1,178 | 5.371 |32.930 | —-0.693 | —0.700 | 6.449 —0.257 |- 0.404
60 4945 | —2400| 4,812 [26.118 | —1.890 : —1.206 [ 6.792 —1.207 |- 0.843
cv 0 0.0 0.0 2974 |54.390 0.0 0.084 | 0.0 0.0 0.197
N =240 0.57 0440 | —2.104 | 5500 [47.810 | —1950 | —1.254 |-0.135 — 1.490 |—0.078
1.75 90,285 | — 1.486/| 6.670 |-2.003 1.782 | —0.244 | 20.130 — 0400 |—0.044
TBO 2 59385 | —1.190| 9.077 |—5834 | —0.583 | —0.854 | 11.222 —0.869 |— 0473
N = 360 6 1.089 | —1.203| 1.019 |72.605 0.477 | —0.089 | 2.109 —0.391 0.524
Table 2. Average PI in percent when forecast errors are zero.
Rule
Level EQQ DEOQ {POQ |LFL LUC PPB PPBLAB | GMR 5M
Facto.
aw =2 -0.775 -3.177 | 0.747 | 14.397| -0.083 | —0.281 6.266 | —0.120 1.800
LT o] =1 ~0.048 | —2.040 | 1.804 20.753|-1.905 | —1.03i 5427 | —0.770 | -0.275
N=60 | 52 =05 | —1696 | —5.495| 4.898 | 23.999|-3.466 | —4.105 | 7.638 | —2.684 | ~2.776
QM =0 297.544 10.657 | 12.396 |105.305) 15118 7.380 7.684 1.867 6.540




Table 3. Results based on N = 60 for the case ot no torecast error and constant Iead time.

Rank Rule Average Std. dev.
i wWw 0.0 0.0
2 GMR 1.867 2.174
3 SM 6.540 7.372
4 PPFB 7.395 5624
5 PPBLAB 7.684 12.692
6 DEOQ 10.657 11.242
7 POQ 12.396 8.138
8 LUC 15.118 19.414
9 LFL 105.305 99.888
10 EOQ 297.544 642.036

Table 4. Results based on N = 360 when forecast errors are present and lead times are uncertain.

Rank Rule Average Std. dev.
1 DEOQ . 2678 8.006
2 LucC —1.312 9.578
3 PPB —1.308 8.245
4 GMR —0.738 6.235
5 SM —0.688 6.976
6 EQQ -0.544 10.290
7 WW 0.0 0.0
8 POQ 4.631 14.325
9 PPBLAB 8.063 19.939

10 LFL 18.768 37.107

Table 5. Owverall performance based on N = 720 observations.

Rank Rule Average Std. dev,
1 DEOQ -1.197 9.606
2 GMR —0.630 6.895
3 PPB —0.471 8.313
4 LuC —0.056 11.465
5 ww 0.0 0.0
6 SM 0.025 8.056
7 POO 5.048 13.677
8 PPBLAB 6.665 17.597
9 ECQ 30242 199987

10 LFL 33.386 62.431
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Table 6. Effect of various factor levels on the cost performance.

Factor Factor levels DEOQ LUC PPB GMR sM
compared

TBO 2vs. 6 n.s. .s. n.s. n.s. IL.s.

Ovs. .36 1% 5% n.s. n.s. ns.

cv Ovs. 1.75 ns. n.s. n.s. ns. ns.

58vs 175 n.s. 5% n.s. n.s. n.s.

Ovs. 30 n.s. 1% ns. n.s. 5%

G 0vs. 60 1% 1% 5% 1.5, 1%

30vs. 60 1.s. 8. ns. 5. n.s.

2vs. 1 n.s, ns. 1.3, n.s. n.s.

2vs. .5 ns. ns. 5% ns. n.s.

o] 2vs.0 1% 1% 1% n.s. 1%

lvs. 5 n.s. ns. n.s. n.s. n.s.

1vs. 1% 1% 1% 5% 1%

Svs. 0 1% 1% 1% 5% 1%

4, Conclusions

n.s. = not significant with 5% level
1% = significant with 1% level, or less.

The simulation results provided the evidence that the introduction of lead time uncertainty has a
strong influence on the relative performance of the lot-sizing rules as anticipated. WW was surpassed
by other rules and the rank order of the overall performances was DEOQ, GMR, PPB, LUC, and WW,
DEQQ emerged as nuimber one and showed substantially better compared to the other rules. PPB
and GMR proved effective when uncertainty exisis and belong to the 5 best rules for all cases con-
sidered. DEOQ, PPB, and GMR are easy to understand and simple to use. Therefore, if the uncertainty
in lead time and forecast demand exists, these rules could be used in actual single stage inventory

system.
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