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Abstract

A materials acquisition planning (MAP) problem that involves the determination of how much to
order of a number of different items from a number of different suppliers is considered. This parti-
cular problem is modelled as a nonlinear mixed integer programming problem. A solution procedure
based upon the partition of variables is developed to handle the MAP problem. This solution procedure
utilizes a modified Hooke-Jeeves Pattern Search procedure along with a linear programming simplex
algorithm. An example problem is presented and the results of applying the suggested solution proce-
dure to this problem are reported.

1. Introduction

The need for materials acquisition planning (MAP) arises when there is a number of sources from
which a number of different types of items must be obtained. The problem is to determine when to
order, how much to order, and from which supplier to order for each item on a procurement list. The
demand for the individual items can be determined by exploding the bill of materials for the master
production schedule. Thus, if the materials are ordered specifically to meet the needs of the master
production schedule, then the demands for individual items can be treated as deterministic. In the MAP
problem with deterministic demand the following will be pertinent to the questions of when, how
much and from which supplier to order:

(1) the cost of acquiring ownership of the items;

(2) the cost of transporting the item from the supplier to the point where it will be stored or used;

(3) the cost of placing a purchase order;

(4) the cost of receiving which consists of unloading, inspecting, placing in inventory and making
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payment to the supplier;

(5) the cost of holding inventory.

The traditional approach to the MAP problem is to assume that there is only one source from which
each item can be obtained [3, 4, 5]. This assumption eliminates the need to consider the cost of
acquiring ownership. However, when there are rhultiple suppliers in a competitive market, this assump-
tion will not be reasonable. The traditional approach aiso treats preparation cost, transportation cost,
and receiving cost as part of order cost. Multi-item sinele source inventory models usually assume that
order cost consists of a fixed cost of placing an order regardless of the number of line items and a cost
which varies in proportion to the number of line items in the order. This assumption may be adequate
for special situations in which transportation cost is either negligible or constant for all line items in
an order. When these conditions are not met it will be more realistic to explicitly account for transpor-
tation cost in the analysis of MAP problems. One reason for an explicit accounting of transportation
costs is because rising energy costs have increased the relative importance of transportation cost. At
the same time computerization of the purchase order preparation process has greatly reduced the
relative importance of the data processing cost associated with preparing a purchase order. In situa-
tions in which the purchase order generation system is run periodically the incremental cost of
preparing a purchase order will consist of little more than the cost of the paper and postage. When the
purchase order placement cost is trivial in relation to transportation cost, then purchase order place-
ment cost can be ignored when analyzing the MAP problem. The cost of receiving will typically depend
primarily on the number and kinds of units received during a given period and not on the number of
units in each individual shipment. When this is the case the total receiving cost for a period will not
appreciably influence the solution to the MAP problem and can therefore be ignored.

A mathematical model for the MAP problem with multi-item and multi-supplier is developed in sec-
tion two. This particular model has as its objective the acquisition of a number of demanded items so
as to minimize the sum of purchase cost, transportation cost and inventory holding costs. Section
three describes a solution procedure for solving the MAP problem of interest. This procedure is based
upon partitioning the origining problem into two subprof)lems and successively solving these problems
a number of times. An example problem is presented in section four along wit the numerical results
obtained when the suggested solution procedure is applied to the problem.

2. Model Formulation

The materials acquisition planning (MAP) problem considered in this paper is to determine how
much to order of a particular item from each of a number of suppliers. The selected objective is to
minimize the total relevant cost which consists of: (1) purchase cost; (2) inventory holding cost; and
(3) transportation cost. This problem is to be solved subject to the following constraints:

(1) the total amount of any specific item acquired from all suppliers must equal the demand for

that item

(2) the total amount acquired from any supplier cannot exceed the transportation capacity assign-

ed to that supplier.
The following assumptions are utilized in formulating this model:

(1) the planning horizon is equal to one period

(2) demand for each of the items is known and occurs at a uniform rate throughout the planning
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(3) each item can be obtained from a number of different sources at different locations

(4) a fixed transportation cost dependent on source location is charged for each trip

(5) holding costs are proportional to the dollar value of inventory units

(6) the volume and weight of each item is known

(7) all transportation units (trucks in the following) have the same volumetric and weight capacity.

Constants
d i = demand (consumption) of item i
h = holding cost per unit per planning period
m = number of suppliers
n = number of items
P i = price of unit item i offered from supplier j
TC = total cost
ch = transportation cost of a truck from supplier j
Tv = volume of a truck
Tw = weight capacity of a truck
Vi = volume of one unit of item i
Wi = weight of one unit of itemi.

Variables

Uj = number of trucks needed for supplier j
Xij = number of units of item i purchased from supplier j.

The objective function for the MAP problem is given by the following expression:

m n m
o s s h m l n (1)
Minimize TC = z Zz Pi.X..+ Y T U + — = 3
R R C _ -
_]= 1 1=1 j=1 1 i 2 J=1 UJ l=1 Pg' X-g

The first term in this expression represents the total purchase cost for all items. The second term
represents total transportation cost. The third represents inventory holding cost. This last term was
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formulated on the basis of the assumption that if more than one trip is required then the trips will
be equally spaced throughout the planning period and will carry the same dollar value of cargo.

The above expression for the objective function can be expressed in a more compact form by
combining terms

m h oD m
E (1 +'§IT) E ‘Pij Xij + .E ch Uj 2)
j=1 1= =1

A number of constraints must be observed in minimizing the above expression:
(1) Demand constraint

2 X.=d, i=1,2,..n. 3)

The purpose of this constraint is to assume that the total amount purchased will be adequate.
(2) Volumetric capacity constraint

n Vi Xij )
5 < Uj, j=1, .., m. 4
i=1 Tv

This constraint specifies that the total volume shipped over any route must not exceed the total
capacity of the truck trips assigned to that route.

(3) Weight capacity constraint

n W.X.

5 1 1) <

i=1 w

U, i=1,2, ., m. (5)

The purpose of this constraint is to assume that the total weight shipped over any route does
not exceed the weight capacity of the truck tripe assigned to that route.
(4) Nonnegativity and integer constraints

le =0, U] > 0 and integer.
3. Solution Procedure

The model in section two is a mixed integer nonlinear programming problem. The number of
transportation units (trucks, ships, planes, etc.) should be integer, while the number of units purchased
can be either integer or continuous variables. If the quantities to be purchased are sufficiently large,
then the decision variables can be treated as continuous. In this case we have a linear programming
(LP) problem and the simplex algorithm can be utilized to determine the optimal value of the objective
function for the unconstrained outer minimization problem. If the quantities to be purchased are rela-
tively small then they should be treated as integers. In this case it would be necessary to utilize an
integer programming (IP) algorithm to determine the optimal value of the objective function for the
unconstrained outer minimization problem. If the problem is sufficiently small, then enumeration
techniques could be employed to determine the optimal solution. However, the problem is combina-
torial in nature and real world problems almost always will be too large to be solved by enumeration
techniques. Consequently, it was necessary to develop a solution procedure which could efficiently
solve realistic problems. The solution procedure developed utilizes the projection principle [1]. This
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principle utilizes a transformation that temporarily fixes the transportation units integer decision var-
iables. The resulting problem, with integer variables fixed, will be referred to as the “‘inner minimiza-
tion” problem. The problem which results from this transformation is imbedded in an “‘cuter minimi-
zation™ problem, the objective of which is to determine the optimal number of transportation units
to assign to a particular route. The outer minimization problem is an integer optimization problem.

To solve the integer problem, a modified Hooke-Jeeves pattern search algorithm was employed. The
conventional Hooke-Jeeves method [2] evaluates the objective function of the unconstrained optimiza-
tion problem in order to determine how the values of the unconstrained optimization problem in order
to determine how the values of the decision variables should be perturbed. In the present application
the value of the objective function for the outer minimization problem is determined by solving the LP
problem which characterizes the inner minimization problem. Based on the outcome of the inner
minimization LP problem, the Hooke-Jeeves pattern search selects an integer point representing the
number of trucks assigned to the suppliers, and the resulting LP problem is solved. This procedure is
repeated until there is no further improvement in the objective function value. Thus the Hooke-Jeeves
pattern search selects an integer point representing the number of trucks assigned to the suppliers, and
the resulting LP problem is solved. This procedure is repeated until there is no further improvement in
the objective function value. Thus the Hooke-Jeeves algorithm was modified so that the simplex
algorithm or an integer programming algorithm could be used to determine the value of the objective
function for the unconstrained optimization problem. (See the Appendix for a flow chart of the
modified Hooke-Jeeves pattern search solution procedure.) The solution of the LP problem or ILP
problem in the inner minimization problem specifies the number of units of each type product to be
purchased from each supplier for a given assignment of trucks to routes. The Hooke-Jeeves pattern
search specifies how the truck assignments should be varies so that total cost can be reduced. By
alternately solving the LP or ILP inner minimization problem and the unconstrained outer minimiza-
tion problem a local optimal solution will be reached. The stopping criterion for the Hooke-Jeeves
algorithm indicates when this has occurred.

The efficiency of the solution procedure can be increased by identifying infeasible solutions to the
LP and ILP in the inner minimization problem without having to explicitly solve the inner minimi-
zation problem. Two ways for doing this have been developed:

(1) If the number of trucks available is less then the minimum number required to transport the

required volume assuming that each truck is filled to capacity, then the solution to the LP or
ILP in the inner minimization problem will be infeasible regardless of how the trucks are assign-
ed. The minimum number of trucks (M) necessary to transport all the demands can be calculated
as follows:

M is the smallest integer equal to or exceeding.

truck capacity

(2) No route can be assigned a negative number of trucks.

The computational effort required to solve the original optimization problem can be reduced by
judiciously selecting starting values for the number of trucks. One procedure for doing this would be to
use the optimal solution for a prior time period with similar demand characteristics. Another procedure

would be to tentatively assign the various items to be purchased to the suppliers on the basis of the
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lowest purchase price.
A disadvantage of all search produres is that they do not guarantee convergence to a global optimal

solution. However, the risk of converging to ‘a non-global optimal solution can be reduced by. using
a variety of different starting points.

4. Example Problem

A problem was generated and solved by the solution technique described in the previous section.
This example has five suppliers and each of the suppliers is offering ten itms with the prices shown in
Table 1. Demands of the goods (D), volume of each item (V) and the transportation cost (ch) of each
supplier are also shown in Table I. A truck’s volume capacity is 100 units. Weight considerations were
deemed insignificant when compared with volume restrictions.

Table I. Example Problem Information

Item) 23 4 5 6 7 8 9 10| T.
Supplie K
1 25 1 10 5 3 1 20 99999* 9 5 | 40
2 3 9 8 6 25 13 19 3 8 45 | 50
3 2 12 99999 4 35 9 25 4 10 5 20
4 32 1 11 99999 4 115 2 12 99999 70
5 99999 8 10.5 7 27 11 20 3 9 6 | 100
D 500 400 1000 300 700 1500 200 500 ° 300 100
\% 3 25 5 2 15 2 10 7

*99999 represents that the supplier does not offer the item (h=0.1)
Two different starting points were tested and resulted in the following local optimal solutions.

Starting point One

Starting vector = (40, 40, 40, 40, 40) where ith element represents the number of trucks that ith
supplier can utilize.

Item | 2 3 4 5 6 7 8 9 10 | Trucks

Supplier Allocated
1 400 240 32
2 1000 700 200 68
3 500 300 1500 60 100 60
4 200 300 16
5 0
D 500 400 1000 300 700 1500 200 500 300 100

Total cost = 28,213.45




 Starting Point Two

Starting vector = (10, 90, 20, 10, 80)

Item Trucks
Supplier 1 2 3 4 5 6 7 8 9 10 | Allocated
1 100 10 1000 9
2 1000 60 56
3 500 300 1400 44
4 200 10
5 400 700 500 230 56
D 500 400 1000 300 700 1500 200 500 300 100 J

Total cost = 31,320.96

In both problems the initial step size was 8 trcks and it was reduced by half until it reached one

truck.

5. Conclusion

An optimization procedure for a specific multitem multi-source materials acquisition problem has
been presented. The solution precedure developed for the problem utilizes a modified Hooke-Jeeves
pattern search and linear programming simplex method althernately. This solution method may be
used to solve problems of moderate size even though the problem as formulated is complexanonlinear
mixed integer problem.
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APPENDIX

Flow Chart for Modified Hooke-Jeeves Pattern Search
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