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FAINT-CONTINUITY AND SET-CONNECTEDNESS
By Takashi Noiri

1. Introduction

In 1971, Jin Ho Kwak [1] introduced a new class of functions called set-
connected and obtained some sufficient conditions for a set-connected function
to be continuous. In 1976, the present author [5] continued the investigation
of set-connected functions and showed that every weakly-continuous surjection
is set-connected. Quite recently, P. E. Long and L. L. Herrington [3] have
introduced a weak form of continuity called faintly-continuous by making use
of G-open sets. They obtained a large number of properties concerning such
functions, and among them, showed that every weakly-continuous function is
faintly-continuous and faint-continuity is equivalent to almost-continuity in the
sense of Singal [10] if the range is almost-regular [9]. The purpose of the
present note is to obtain further properties about faint-continuity and set-
connectedness. It will be shown that every faintly-continuous surjection is set-
connected and the converse is not true even though the range is regular.

2. Preliminaries

Throughout the present note X and ¥ denote topological spaces on which no
separation axioms are assumed unless explicitly stated. Let S be a subset of X.
The closure of S and the interior of S are denoted by CI(S) and Int(S), res-
pectively. The subset S is said to be regular open (resp. regular closed) if Int
(C1(8))=S (resp. Cl(Int (S))=S8). The set ol all xeX such that SNCI(V)#0
for every neighborhood V of x is called the 6-closure [11] of S. The subset S
is called O-closed if the O-closure of S is contained in S. The complement of a
G-closed set is called A-open. We shall recall the definitions of some weak
forms of continuity. A function f:X—Y is said to be weakly-continuous [2]
(resp. O-continuwous, almost-continuous [10]) if for each xeX and each open
neighborhood V' of f(x), there exists an open neighborhood U of x such that
FANCCIV) (resp. FCIANCCIV), FWUHCInt(CIVI)).

REMARK 2.1. The following implications are known:



174 Takashi Noiri
continuity—almost-continuity=0-continuityyweak-conlinuity.

DEFINITION 2.2, A function #:X—Y is said to be faintly-continuous [3] if
for each xeX and each 6-open set V containing f(z), there exists an open set
U containing x such that fF(U)ICV.

THEOREM 2.3. (Long and Herrington [3]). Ewvery weakly-continuous function
is faintly-continuous.

DEFINITION 2.4. A space X is said to be connected between A and B if there
exists no closed and open set F of X such that ACF and FNB=@. A function
f 1 XY is said to be set-connected [1] provided that f(X) is connected between
f(A) and F(B) with respect to the relative topology if X is connected between
A and B.

THEOREM 2.5. (Noiri, [5]). Every weakly-continnous surjection is sei-connec-
ted.

3. Faintly-continuous functions

THEOREM 3.1. If f:X—=Y is almost-continuous and V is G-open in Y, then
XV is 0-open in X.

PROOF. Let V be G-open in ¥ and x any point of _f_l(V). By Theorem 1
of [3], there exists a regular open set U such that f(x) e UCCI{U)CV. Thus,
we have xef WU)Cf {ClW)CF V). Since f is almost-continuous, f ()
is open in X and f _I(CI(UJ) is closed in X [10, Theorem 2.2.]. Therefore,
we obtain x ¢ £ UCCL@)CF (V). This shows that £ (V) is 6-open
in X.

COROLLARY 3.2. (Long and Herrington [3]). If f: XY is continuons and
V is O-open in Y, then fﬁl(V) is B-open in X.

THEOREM 3.3. A function f: X—=Y is faintly-continuons if and only if f*:
X—Y* is faintly-continuous, where Y denoles the semiregularization of Y.

PROOF, Necessity. Let . X—Y be faintly-continuous. Let V* be any #-open
set of ¥*. Since the identity function 7:¥—Y* is continuous, by Corollary
3.2 i '(V*) is 6-open in ¥ and hence (f¥) (V=) (VO =f G (V*)
is open in X.

Sufficiency. Let f*: X—Y* be faintly-continuous. Let ¥V be any 0-open set
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of Y. Since i : Y*-Y is almost-continuous, by Theorem 3.1 (V) is 6-open
in Y* and hence £ '(V)=(f*) "'G(¥)) is open in X.

In Theorem 14 of [3], it is shown that if a function f:X-Y is weakly-
continuous then the graph map g:X—XxY is faintly-continuous. However,
it was already known that a function f: : X—Y is weakly-continuous if and
only if the graph map g:X—XXY is weakly-continuous [4, Theorem 1].
Thus, Theorem 14 of [3] is an immediate consequence of Theorem 2.8 and the
-result stated above.

THEOREM 3.4. If a surjection f:X—Y is faintly-continuous, then f is set-
connected.

PROOF. Let V be any open and closed set ¥. Then V is 6-open and &-closed
in Y. Since f is faintly-continuous, f-l(V) is open and closed in X by Theo-

rem 9 of [3]. Since f is surjective, it follows from Theorem 2 of [1] that f is
set-connected.

A space X is said to be @/most-regular [9] if for each regular closed set F
and each x25F, there exist disjoint open sets U and V of X such that FCU and
x eV, It is known that every faintly-continuous function into an almost-regular
space is almost-continuous [3, Theorem 11].

REMARK 3.5. Every set-connected surjection is not always faintly-continuous
even though the range is a regular space as the following example shows.

EXAMPLE 3.6. Let I=[0,1] be the unit interval, T the co-countable topology
for I and ¢ the usual topology for I. Let 7 : (Z,7)—(I,0) be the identity func-
tion. Then, since (I, ¢) is regular and A=1[0,1/2)eo, A is G-open in (I, g)
but z'gl(A)E?. Thus, 7 is a set-connected function without being faintly-con-
tinuous,

COROLLARY 3.7. Connectedness is preserved under faintly-continuous surjec-
tions.

PROOF. This follows from [1, Lemma 4] and Theorem 3. 4.
4, Set-connected functions

A space X is said to be extremally disconnected if CI(V) is open in X for
every open set ¥V of X. A function f:X-Y is said to be d-comtinuous [6] if
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for each x ¢ X and each open neighborhood ¥V of f(x) there exists an open
neighborhood U of x such that f(Int(Cl(U )))CInt€Cl1(V)). It is known in [6]
that d-continuity implies almost-continuity and is independent of continuity.

THEOREM 4.1. If f: XY is set-connected and Y is extremally disconnected,
then f is J-continuous.

PROOF. Let x € X and V be any open neighborhood of f(x). Since Y is
extremally disconnected, Cl(V) is a closed and open set of ¥, Since f is set-con-
nected, it follows from Theorem 2 and Remark of [1] that f _I(CI(V}) is closed
and open in X. Put U=f _1(CI(V)), then U is an open neighborhood of ¥ and
FInt(CLON)ICInt(CL(V)). This shows that f is d-continuous.

COROLLARY 4.2. Let Y be an extremally disconnected space. Then, for a
surjection f: XY, the following are equivalent:

(@) f is d-continuous.

(b) f is almost-continuous.

(¢) f ts O-continuous.

(d) f is weakly-continuous.

(e) f is faintly-continuous.

(f) f is set-connected.

PROOF., This follows from Remark 2.1, Theorems 2.3, 3.4 and 4. 1. It should
be noted that the condition “surjective” on f is only used to prove the implica-
tion: {e)=>(f).

A space X is said to be locally S-closed [7] if each point of X has an open
neighborhood which is an S-closed subspace of X.

COROLLARY 4.3. If f:X-Y is set-connected and Y is locally S-closed
regular, then f is continuous.

PROOF. Since Y is locally S-closed regular, by Theorem 3.5 of [7] ¥ is
extremally disconnected and hence f is §-continuous by Theorem 4. 1. Moreover,
since ¥ is regular, f is continuous [6, Theorem 4.6].

The graph G(f) of a function f: X—Y is said to be extremely closed (3] if
for each (x, y)=G(f) there exist an open set U containing x and a f-open set
V containing y such that (UXV)NG(f)=0.

THEOREM 4.4. If f: XY is set-connected and Y ts extremally disconneccted
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Hausdorff, then G(f) is extremely-closed.

PROOF. Since f is set-connected and ¥ is extremally disconnected, by Theo-
rem 4.1 f is J-continuous. Moreover, since Y is Hausdorff, it follows from
Theorem 5.2 of [6] that for each (x, ¥)¢G(f) there exist regular open sets UC
X and VCY containing x and y, respectively, such that F({U)NV=0. Since ¥
is extremally disconnected, V=Int(CI(V)) is open and -closed in ¥ and hence
it is f-open in Y. Therefore, by Theorem 15 of [3] G(f) is extremely-closed.

COROLLARY 4.5, If f: XY is set-connected and Y islocally S-closed Haus-
dorff, then G(f) is extremely-closed.

PROOF, This follows from the fact that every locally S-closed Hausdor{f
space is extremally disconnected [7, Theorem 3.2].

A function f: X—Y is said to be weakly-open [8] if for every open set U of
X fW)HCInt( f(CIE))).

THEOREM 4.6. Let f: XY be a set-connected weakly-open surjection and

assume that f_l(y) is connected for each y ¢ Y. Then, X is connecied if and
only if Y is connected.

PROOF. Necessity. This follows from Lemma 4 of [1].

Sufficiency. Assume that X is not connected. There exist disjoint nonempty
open sets U, and U, such that X=U,UU,. Since f is weakly-open and U, v,
are closed and open in X, f(U 1) and f(U,) are open in ¥. Moreover, we have
FU#0, fUD#Dand Y =FUDUFU,). Next, we show that f(U 3i1/U,)=0.
Assume that y eFTDNSU,). Put G;=F " (»NU, for j=1, 2. Then, for j=1, 2
GJ. is s nonempty open set of the subspace f_l(y). We also have G,UGz2= f’I{ )
and G ,NG,=0. This contradicts that f _I(y) is connected for each y ¢ Y.
Therefore, we obtain f(UDNfU,)=0 and hence ¥ is not connected.
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