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ON THE AUXILIARY GEOMETRIC MEAN OF ENTIRE FUNCTIONS
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1. Introduction
Let

1D f@= 'é(‘]aﬂ 2"

be an entire function. Set
M@)=M(@, )= lrr:ax lf@1,
z\=r

u(=u(r, )= max (|a,|r")
n=0

and v()=v(r, f)=max(n:u(r)=|e,|r"}.
M(r), u(r) and u(r) are called respectively the maximum modulus, the maxi-
mum term and the rank of the maximum term of f(z) for |z|=7.

The concept of (p, ¢)-order and lower (p, g)-order of f(z) having an index
pair (p, @), (p=1, ¢=1, p=¢), was introduced by Juneja, Kapoor and Bajpai
[1]. Thus f(2) is said to be of (p, g)-order ¢ and lower (p, ¢)-order A, if

[#) (p, Q=0

1.2) lim SuP log™ M@r) _olp, 9)=
log) A(p. Q=4
[n—1]

r—CoO int

0 3 =
where !og[] z=zx and log[] z=log(log z) for 0<log[" 1 x<co, For the
definition of index-pair etc. (see Juneja et al. 1976).

The geometric mean of f(z) for |z| =7 has been defined as [15, p.144]:
2z

(1.3 cr=exp( [ loglf(re )| as).
0

The following two geometric means g,(r) and g,*(r) were introduced by Kam-
than [10], and, Jain and Chugh [8], respectively

7

SO LR
(1.4) g,‘,(r)—exp{ AT :x log G(x) dx], ke R+.
ptl [ -
1.5) g X =exp|{—*TL [ 7 (log ) log 6(x) dx!, *cR,.
k { (logry*™! ) g gz G(x) } W
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A number of properties regarding the growths of g2,(r) with respect to G(r)
and other auxiliary functions for an entire function of order @(2,1) were ob-
tained in ([3], [4], [9]—[14], [16]—[18] etc.). Also, some authors ([6]—[8],
[20]1, [21] ete.) investigated the growth relations of the geometric mean g,k
for an entire function of order p(2,2).

In the present paper we are introducing a unified geometric mean J, (7).
#ER , which we shall term as Auxiliary Geometric Mean (a.g.m.) of f(2)
and is given by

m—1]
(1.6) fk,m(r):exp{ fox Lm 1] r)k-H f (log mx'))] l(zg) G(x) }

o
Eiis "
where me [ 4.8 V[m] (r)= 'ﬂ1 log t4l » and ¥, is a constant depending on #.
y f=rd

Our aim in this paper is to investigate certain growth properties of the a.g.
m. with respect to G(r) and #(#¥) (number of zeros of f(z) in |z|=r) for an
entire funcion of (p,g)-order p(p,q) and lower (p, g)-order A(p,q). The results
that we obtained herc generalize, improve and combined many of the known
results (see e.g. [5], [6], [8], [9], [11]—[14], [18] etc.)

2. Statements of theorems

#

THEOREM 1. Let f(2)=3_ a_." be an entire function having (p,q)-order
r=0
o(p, q) and lower (p, q)-order 2(p, q), then

4 =
. sup _log” F(r) _e(p, Q=¢
@10 ,ILH;‘O inf g * A(p, =2,

where F(r) may be replaced by G() or J, . (r).

THEOREM 2. Let f(2) be an entive function having (p, q)-order p and F(0)#0,
then '

(2.2) '—-5 = lim inf LB G ™)
v Fro+l =l (log™ )*
. log{G(r)/ T ()} 2 ay
s o (Iog[q_” n° k+p+l
where,
(V. .7 7
.3 11 ?E? F:ﬁ:),%:;z 10, d,= R, UI0).
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THEOREM 3. For a class of entire functions for which

log™ J, .
(2.4) lim —Inﬁ'"‘—: 400,
r—cd log r

we have

(31
log™ J, (1)
. sup bom _log L_
25 lim ; —_— =
(2.5 m inf log™ 7 log °

where,

[m]
log G ]I/log Ml
r*

sup
) fim 5o {Tog 7, (0
THEOREM 4. Let f(z2)= Z‘ﬂa” 2" be an entire function having (p, q@)-order o,
n=
lower (p, g)-order A and f(0)70, then

sup log{p 1 (n(r)log r) _
]Og [q] 2 N

where n(r) represents the number of zeros of JF(2) in |z|=r.

@n tm 32

THEOREM 5. For an entire function f(z) of (p, q)-order p, lower (b, q)-order

2, F(0)£0 and N(r)=fn(x).fx dx, we find

.8 lim SUP ML e,

r-voo I log ¥ »
THEOREM 6. For r,>r,>0,
2.9 {Qog™ ™M 2 = og ™Y %) log GG
=(log™ ™" 7.)*™ log Ty r )= (og™ ™t »)**110g Jo )=

{(Ioglm—” rZJkH—(log[m"H r,)“l} log G(r,).

THEOREM 7. Let f,(2) and Fo2) be two entire functions of (p, g)-orders 1
@, and lower (p, q)-orders 2;, Ly, respectively and f(z) be an entire funclion
satisfying

210)  log® ™ F@r, H~1log N Fer, £ 1" 0g® Y FCr £)1P),

a, BER,
Then the (p, q)-order p and lower (p, q)-order X of f(z) are bounded by

(2.11) al,+8,=2=p=ap,+ p,,
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and if,

(2.12) log? Fer, H~Mlog? Fr, £V (log® Fer, £))'77, re@,1)
then

2.13) X2y T=a=0=0 oy .

THEOREM 8. For every entire funclion f(z)= E{'}an = of (p, q)-order o, we
n—=
find
1)
-1l G, f )
l g rn el
(2.14) lim sup [ 1) ] =6
r—co ]Og o
in the neighbourhood of points where F(2)>M@) W) % Here fV(2) de-
notes the first derivative of f(z) and
p=P@=P(O, p, 9)=0 if p>q
=1+0 if p=¢=2
=max(l, @) if 3=p=g<c<
— oo 1‘f p.—_q:oo,

0=0=0co.

3. Lemmas

In this section we prove a few lemmas which are needed in the sequel.

LEMMA 1. log G(r) is an increasing convex function of log r, f(0)7O0.

PROOF. By Jensen’s formula, we have

r

log G(r)=loglf @)+ [ 2L 4

a
=log Gry+[ 29 4y

This gives,

dllog G(r)] _
d[log r] =n(r).

The right hand side is a non-decreasing function of », since #(r) is a non-
decreasing function of 7 and tends to infinity as r—sco.

LEMMA 2. (log[m_ll r)“l [logG(r)}2 is an increasing convex funciion of

(1) 7, need not be the same at each occurence.
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-1 1
(og™ 1 ¥+ 10g 1, .-

PROOF. We have

”m— k 2
diCog ™! " flog GOV _ 5 1og ™" " tlog GG )
aidog™ " N 10g 7, D1 4 F o™V 0" log 6 4

?ir_[(k“){ V @ 4
Wi (D G0
=log C+—GrD e

which increases with r for large values of », since, by lemma 1, log G(r) is
an increasing convex function of log 7.

LEMMA 3. For R> =0,
& G=M@=(GH)) (R+1)/R—r_

PROOF. This can easily be proved with the help of (1.3) and the Poisson-
Jensen formula

2r
log| /)| =5 [ R=r) loglf(Re*)\d$__ Rz, rd
2z b —R r cos (6— ¢)-{-r a=1 R(r cr&’_aﬂ) |

LEMMA 4. For R>r>1,

(m—=1] pyft1
@2) log J, J(N=log GN=——m—r U8 R — 150 5, (B
g (Iog R) T "'(log [ — j r) e s

PROOF. From (1.6), we have

3.3) lo = kil _Qog™ ! 0" log 6) ,
2 Jpm() (og™ 1 Pl f V[m ") dx=log G(r).
Further,
R m
- k+1 (log™~ x) log G(x)
IOg J*”'(R)_ (Iog[m—l] R)&+l f V[al-2 () 2%

r

o (&+D log G F Qog™ ! o’
= g™ R Vim—n®)

r

[—1] gkl (m—1] _\&+1
lo: R —(lo r)
= ( B (IO;[M—l](R)g-;#-l IOg G(r)'
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(3.3) and (3.4) complete the proof of lemma 4.

4. Proofs of thesrems

THEOREM 1. For R=Kr, K>1, (3.1) and (3.2) give
g Grn=log™ M@ =log™ G(EH+0Q)

Qog™ 1K A" —(gg™! p*H!

and log J, ,, (Kr)= Qog™ 1 Kp) ™ log G(»)
[ 1 [m—1] k+1
=] 1= [og.—_r_] ] log G(7),
log" Mgy
lim SUP g” ¢ —lim Sup _log (2] M(.’V)
L ,1_]?10 inf IDquJ Sorzesin g log ,'{’
[p]
and Liig 998 log ™ Jy () — i SUP log (e} Gr) _
o int log[q] # =1 inf 10g[q] ,2 :
Also, from (3.2), we have
T sul IGC‘ f!e m ) <lim sup log[p] G() =
0 1l pmcoIDf  jooldl 3

This completes the proof of theorem 1.

REMARK 1. Theorem 1 is the combination of the following five results in-
vestigated by different workers:

1) For (p, @)=, 1), F(r)=G(r), the result is due to Srivasiava [18].

(i) For (p, g)=(2,2), F(r)=G(r), lhe vesull is due lo Jain and Chugh [6].

Gil) For (p, =@, D, Fr)=J (=g, (=g, the result is due to Kam-
than [9].

(v) For (p,)=@, 1, F)=J, (N=g (1), the result is due to Kuldip Kumar
[12].

v) For (p,9)=02,2), Fr=] woM=g* (r), the result is due to Jain and
Chugh [6].

THEOREM 2. Combining (1.3) and (1.6) and using Jensen’s formula, we get

G\ _ 1 AR R T
el log{ Jo5l0) }_ (og™ 1 )F™] 'f(log 5 E—(log G(X))dx

J ?z(x) Clog [m—1] >k+1 .

(loglm 1] i :e+l
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From (2.3), we have, for any >0 and r>r,,

[m—1] _ye—1
=n(n=@,+e) TLE—_ 1)

_ .y r(log (m—1] el
@2 (@, ——C

Vim—z
Using right-hand inequality in (4.1), we obtain

G(r) | g,+e [ (log™ 1 gf+e
1 d:
Og{ ]k_m(r)j (og™ 1 r)k+1_£ V[m—zl(”) "
@,+& (log" 1 7)°
e @ -oa,
. log G/ T (D) _ 0,
L }LIE.OSUD (Iog[m'—ll r)ﬂ = k+o+1 °

Similarly, on using left-hand inequality of (4.2) in (4.1) we find

log{G()/ T, ()} dy
=11 ¢ = k+p+1

r—oco (log

REMARK 2. A result due to Vaish and Srivastava [21], for (p,¢)=(2,2),
I k.z(r)-=—g** (r), becomes the particular case of the above theorem.

THEOREM 3. We have

log [log™ ™ »*** log f}é,m(r)]:(k-i_l)f lgggffmﬁz" V[mff] Ok

since numerator on the right-hand side is the differential coefficient of
denominator. This gives

log[og"™ ™ »**! log T 4.0 <(k+l)f (L+e)]°g[m]"ﬁ
for any £>0 and r>r,=r,(e). *
Hence -ve obtain
(L+e)!og[’"]r

logé [Oog[mfll P gog T (D1 GR+1) og (L&)

log™ /., ("

or, lim su =log L,
it log™ »
log?7, ,
since, B — e oo,

()

r—o0 log r
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Further, using lemma 2, we have

log {Clog™ 2" 10g 7, , @)}

e { (log G(x)? dx
_(k-i'l)}f log ]k’m (z) logG(x) ¥ et (x)

(log G(r))° % d
=2y g g L x
b log 7 ,, () [ log G(x) Vi, &

log G@))* "
=(k+1) lgg"g]kl;% oz Gy log™ @) ~log

ml, |
>Gro@-o" _Eegg—f%%{loglmlzf—lf)g[m]r}.

for a sequence of values of 7 tending to infinity. Consequently,

log® J b )

[m] 7

lim sup =log L.
r—c0 log[m] r
In a similar manner, we prove that
3]
log™ J . (1)
lim inf ——"——=log
=00 log y

This proves theorem 3.

REMARK 3. Theorem 3 is the generalization of the following results:

(i) (see theorem 11, p.107, [9]) due lo Kamthan for (p,q)=(2, 1),
J1.(=g,()=g ).

(ii) (see theorem 6, p.254, [111) dwe to Kamthan and Jain for (p,¢)=(2,1),
T 1(r=gy(r).

(iii) (see theorem 4, p.d44,[12]) due to Kuldip Kumar for (p,q)=(2,1),
T 1) =g,(r).

(iv) (see theorem 4, p.124, [8]) due to Jain and Chugh for (p,q)=(2,2),
T4, o()=g,*(r).

In (ii) Kamthan and Jain used the hypothesis ‘log log G(r) is an increasing
convex function of logr’ instead of (2.4) for proving the result (2.5) for(p,q)
=(2,1) and J, ;("n=g,(").

Similary, in (iv) Jain and Chugh used the hypothesis ‘log log G(r) is an
increasing convex function of log log ' instead of (2.4) for getting the result
(2.5) for (p,)=(2,2) and J, ,(r)=g*(r).



On the Auxiliary Geometric Mean of Eniire Functions 167

THEOREM 4. From (3.3), we have

log J, n(N=log 6= [ 2E gz +10g] O]
]

=log G(ro)-l- f —'—'gfn)—dx_s_u(r) log r+0(1),

[p]
i S0 18 Jem @ o

sup lﬁ[’ Yn(r) log r) o
inf lal , i

smonti |1} logl 4l ooy

or, hm
log

Again, we have

P

r 1] Nk
F E+1 _Aog™ V" log G(x) .
lo, (r )= dx, d>d">1
g Jiu (og™ 1, )k+l{ Vim—2y® >d'>

k+1) log G(*) gog"" ~lg
= Clog [m— 1]51:*1 f q]() d"'

. r [m—1) 0" Yk—1
=log G(fﬁ )[1—1%:7} ]

"108’ GG {1-0()

>f L) dx=n(r) log r.

This gives,

9
i Sup 1og? () log 1) < lim S0 18" S @ _o
el i} log“ on iaf log('” =z

REMARK 4. For entire functions of non-integral order this theorem gives
the following results as particular cases:

() For (p,9)=(2,1), the result is given by Boas [1,p.15].

(i) For (p,q)=(2,2), the result is given by Jain and Chugh [5,p.98].

THEOREM 5. We have

f=
N(rz) g[ "g—x)dxzn(r) log 7,

and Nr=ow+ [ %’)dxgn(r) log r (1+0(1)).
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Now this theorem follows from theorem 4 and the above two inequalities.

REMARKS 5. The proof of Tiheorem 5 is given by Jain and Chugh [5, p.99]
for (p,9)=(2,2).

THEOREM 6. Since G{r) is an increasing function of », we have, from (1,6)

Qog™ Hr)¥* 1 1og 7, . (r)— g™ M 7 )** 1og 1, . (7D

¢ m—1] ~k
=(k+1) f (log V[,,:)g] éz:g SCI NP

={(og™ ) —og™ M r )" log G(r,),
and

(og™ M 7Y Mog J, (ry)=Cog™ Vs ) l0g 7, (D

3 [m—1] ~E
=(k+1)J (log x)" log G(x) dx

Vim—2g &)
= (Qog™ e, )H ! —og™ M7 ¥+ Y 1og G(ry).

COROLLARY 1. If 5 (0<p<1) is a constant, then

Uy Cexp®™ ey

lim — =Q.
r—r00 Sy o CEXD =1l
: = 5 n
Putting r1=exp[’” Iy, rzzexp[”’ Uenm, (exp™ x=exp(exp” ! 2)), exp® x

=z), in (2.9), we get
o exp™ )
U g mexp™ Uy r)”

Now, proceeding to limits the result follows.

log G(exp =3l

n ?')é(l—ﬂkﬂ)_l 103[ T ]élog Glexp™ Uy)

THEOREM 7. For any >0, we have
logllog "™ F(r,7)1°
logw1 ¥

<e (Pl"'%), r>7,(e)

logllog?™" F(r, 017

&
b Ta] , <15(92 4 "2—)- r> fz(e) .

Adding above two inequalities, we get, for r>ro=max (r,, 7,),
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log[{log?™ F(r, 71" log? ™ F(r, £)1°]

Similarly, for limit infimum as given by (2.1), we find
log[{log?™ F(r, 7)) *(log?™" F(r, 7,0

. ,
log!q] - >a?~]+ﬁlz-1-7(a'+ﬁ)e.

Now, using (2.10), we have for sufficiently large values of 7,

lp]
a2 +BaythatPe <AE LD Cap+hoptg(athe,
og'" 7

ar, al+BA,=2=0=ap +5 0,
Again, for any &>0, we have, from (2.1)
log{”] F(r, S,

{ log @ 7

log® F@r, £ 17 _
d { ogl lq]r ’: } Loyt 7, r>rCe).
og 7

On multiplying the above two inequalities, we have, for any e>0 and r>r;=
max (7', ")

"
2 } <(91+E)7, r>v'(e)

(log® F(r, £V (log? F(r, ')
log.[ﬂ #

1— v
<d oy " frre i+ vo).
1 2

Similary, proceeding to limit infimum,
fog? Fer, )7 (og® F@r, f 217
T g[rﬂ .

il e P o | e i
> 2, {1 E(T: L )+0(1)}.
On account of (2.12), we find for sufficiently large values of 7,

ip)
woedenly o d=r lo F(r. )

o r=rl o F i—r
<d o, "1 s(_pl o +o)
Now, taking limits as r——oc, we get (2.13).
COROLLARY 2. Let f,(2), i=1, 2, -, n be n entire functions of (p, g)-orders
p; and lower (p, g)-orders Z; and f(z) be an entire function satisfying
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(4.3) log[p"” F(r. )~ 11 {log["’ U Fer, TN ER,

then (p, g)-order p and lower (g, q)—order 2 of f(z) are bounded by

n
(4-9 5}.; a; LEASPS T a; 0
and if
[p) i [p) Ty -
(4.5) log™ F(r, f)~ _1-|I (log?” F(r, f21', 7, €00, 1), %‘ri_l
1= 1=
then,
LIS 2 ny.
1.6 J <Z< < L
i D 4= _il:ll o

This corollary is an immediate generalization of the above theorem to the
case of n entire functions.

COROLLARY 3. Let fl(z) and f,(z) be two entire functions of regular (p, ¢)
growth, Then f(z) is also of regular (p, ¢) growth and its order is given by

p=a p,+8 p, and p=p’; p;_r under the conditions (2.10) and (2.12), respec-
tively.

THEOREM 8. We have

27
G(r, fm)=exp{—21; f log|f¢r e'e)ldﬂ}
0

2n

=exp I j log IM|d6+— IIOglf(re )!GJ}
f

( 2‘7
Also, we have [19,p.103], in the neighbourhood of points, where
Lf@1> M@ )™,

A6 u(r)
:;_(Ez_)__uﬂ(z) @)™ 2L kI <k

where u(r) denotes the rank of the maximum term in f(z), for |z|=r.
Hence, in the neighbourhood of points, where [f(2)|>M(r)(u(r)) %,

2n
G, £ =6, Pexp (3o [ logCli+ia w@)N™ XLy 4p)

—1/16

4.7) >G(r, £ 0 (1 —pu@) ™

and
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4. 8) G(r, f(l)) <G(r, f) _u(rL)_ (1+k(U(R))"1/16).
Proceeding to limits, as ¥——oo, (4.7) and (4.8) give

(1)

b-1f, Gr.f)
log* ™ r ) =lim sup log”"! ()
Iog[ﬂ p r—so0

lim s is
ot Pl =6,

log lg] P

This completes the proof of theorem 8.

(=]
COROLLARY 5. For an entire function f(z)= X" a, 2" of (p,¢)-order p,
n=0

Iﬁ—l] G(r.f"\")) L/in

l AN G

4.9 Tobl i " 6Gr.) } ]l .
Hn log” »

From (4.7) and (4.8), we have
Glr, FN>G(r, F~1) _”(YL).(I —k (u(R)) V16

and Gr, F)<G(r, 7470) K-+ RV,

Taking s=1, 2, -, # and multiplying all the inequalities thus obtained and
proceeding to limits (4.9) follows.

Department of Mathematics,
University of Roorkee,

Roorkee-247672 (U.P) India
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