ON CERTAIN CLASSES OF UNIVALENT FUNCTIONS IN THE UNIT DISK

By Shigeyoshi Owa

1. Introduction

Let A denote the class of functions

$$f(z) = z - \sum_{n=2}^{\infty} a_n z^n \qquad (a_n \ge 0)$$

analytic in the unit disk $U = \{|z| < 1\}$. A function $f(z) \in A$ is said to be univalent and starlike if, and only if.

$$\operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\right\} > 0$$

for $z \in U$. Recently, the general idea of order for a starlike function has been introduced in a number of ways as in M. S. Robertson [8], R. J. Libera [2], K. S. Padmanabhan [7] and F. Holland and D. K. Thomas [1]. According to K. S. Padmanabhan [7], a function $f(z) \in A$ is said to be starlike of order k in the unit disk U if the condition

$$\begin{vmatrix} \frac{zf'(z)}{f(z)} - 1 \\ \frac{zf'(z)}{f(z)} + 1 \end{vmatrix} < k$$

hold for some $k(0 < k \le 1)$ and $z \in U$. The class of such functions we denote by S(k). And let C(k) denote the class of functions $f(z) \in A$ such that zf'(z) is in the class S(k).

For the class S(k), K. S. Padmanabhan [7] has given representation formula, some distortion theorems and the radius of convexity. Moreover, M. L. Mogra [3] has shown a sufficient condition for a function in the class S(k).

2. The necessary and sufficient conditions

THEOREM 1. A function

$$f(z) = z - \sum_{n=2}^{\infty} a_n z^n \qquad (a_n \ge 0)$$

is in the class S(k) if, and only if,

AMS(MOS) subject classifications (1980). Primary 26A24, 30C45.

$$\sum_{n=2}^{\infty} \{(n-1) + k(n+1)\} a_n \leq 2k.$$

The equality holds for the function

$$f(z) = z - \sum_{n=2}^{\infty} \frac{2k}{(n-1) + k(n+1)} z^n$$
.

PROOF. Assume that

$$\sum_{n=2}^{\infty} \{(n-1) + k(n+1)\} a_n \leq 2k$$

and let |z|=1. Then we have

$$\begin{aligned} |zf'(z) - f(z)| - k|zf'(z) + f(z)| \\ &= |\sum_{n=2}^{\infty} (1 - n)a_n z^n| - k|2z - \sum_{n=2}^{\infty} (n+1)a_n z^n| \\ &\leq |z| (\sum_{n=2}^{\infty} \{(n-1) + k(n+1)\}a_n - 2k) \\ &\leq 0. \end{aligned}$$

Hence, by the maximum modulus theorem, we have $f(z) \in S(k)$. For the converse, assume that

$$\left| \frac{\frac{zf'(z)}{f(z)} - 1}{\frac{zf'(z)}{f(z)} + 1} \right| = \left| \frac{\sum_{n=2}^{\infty} (n-1)a_n z^n}{2z - \sum_{n=2}^{\infty} (n+1)a_n z^n} \right| < k.$$

Since $|Re(z)| \le |z|$ for any z, we have

(1)
$$Re\left\{\frac{\sum\limits_{n=2}^{\infty}(n-1)a_{n}z^{n}}{2z-\sum\limits_{n=2}^{\infty}(n+1)a_{n}z^{n}}\right\} < k.$$

Choose values of z on the real axis so that zf'(z)/f(z) is real. Upon clearing the denominator in (1) and letting $z\rightarrow 1$ through real values, we obtain

$$\sum_{n=2}^{\infty} (n-1)a_n \le k \left[2 - \sum_{n=2}^{\infty} (n+1)a_n\right]$$

This inequality gives the required condition. Furthermore, the function

$$f(z) = z - \sum_{n=2}^{\infty} \frac{2k}{(n-1) + k(n+1)} z^n$$

is an extremal function for the theorem.

THEOREM 2. A function

$$f(z) = z - \sum_{n=2}^{\infty} a_n z^n \qquad (a_n \ge 0)$$

is in the class C(k) if, and only if,

$$\sum_{n=2}^{\infty} n \{(n-1) + k(n+1)\} a_n \leq 2k.$$

The equality holds for the function

$$f(z) = z - \sum_{n=2}^{\infty} \frac{2k}{n \{(n-1) + k(n+1)\}} z^n$$

The proof of Theorem 2 is obtained by using the same technique as in the proof of Theorem 1.

3. Some properties for the classes S(k) and C(k)

THEOREM 3. Let $0 < k_1 \le k_2 \le 1$. Then we have

$$S(k_1) \supset S(k_2)$$
.

PROOF. Let a function

$$f(z) = z - \sum_{n=2}^{\infty} a_n z^n \qquad (a_n \ge 0)$$

be in the class $S(k_2)$ and $k_1 = k_2 - \delta$. Then, by Theorem 1, we have

$$\sum_{n=2}^{\infty} \{(n-1) + k_2(n+1)\} a_n \leq 2k_2$$

and

$$\sum_{n=2}^{\infty} a_n \leq \frac{2k_2}{1+3k_2} < 1.$$

Consequently, we have

$$\begin{split} &\sum_{n=2}^{\infty} \left\{ (n-1) + k_1(n+1) \right\} a_n \\ &= \sum_{n=2}^{\infty} \left\{ (n-1) + (k_2 - \delta)(n+1) \right\} a_n \\ &\leq \sum_{n=2}^{\infty} \left\{ (n-1) + k_2(n+1) \right\} a_n - 3\delta \sum_{n=2}^{\infty} a_n \\ &\leq 2k_2 - 3\delta \\ &\leq 2k_1. \end{split}$$

This completes the proof of the theorem with the aid of Theorem 1.

THEOREM 4. Let $0 < k_1 \le k_2 \le 1$. Then we have

$$C(k_1) \supset C(k_2)$$
.

The proof of Theorem 4 is given in much the same way as Theorem 3 with the aid of Theorem 2.

4. Distortion theorems for the fractional calculus

There are many definitions of the fractional calculus. In 1978, S. Owa [6] gave the following definitions for the fractional calculus.

DEFINITION 1. The fractional integral of order α is defined by

$$D_z^{-\alpha} f(z) = \frac{1}{\Gamma(\alpha)} \int_0^z \frac{f(\zeta)d\zeta}{(z-\zeta)^{1-\alpha}},$$

where $\alpha > 0$, f(z) is an analytic function in a simply connected region of the z-plane containing the origin and the multiplicity of $(z-\zeta)^{\alpha-1}$ is removed by requiring $\log(z-\zeta)$ to be real when $(z-\zeta)>0$. Moreover,

$$f(z) = \lim_{\alpha \to 0} D_z^{-\alpha} f(z).$$

DEFINITION 2. The fractional derivative of order α is defined by

$$D_z^{\alpha} f(z) = \frac{1}{\Gamma(1-\alpha)} \frac{d}{dz} \int_0^z \frac{f(\zeta)d\zeta}{(z-\zeta)^{\alpha}},$$

where $0<\alpha<1$, f(z) is an analytic function in a simply connected region of the z-plane containing the origin and the multiplicity of $(z-\zeta)^{-\alpha}$ is removed by requiring $\log(z-\zeta)$ to be real when $(z-\zeta)>0$. Moreover,

$$f(z) = \lim_{\alpha \to 0} D_z^{\alpha} f(z).$$

DEFINITION 3. Under the conditions of Definition 2, the fractional derivative of order $(n+\alpha)$ is defined by

$$D_z^{n+\alpha}f(z) = \frac{d^n}{dz^n} D_z^{\alpha}f(z),$$

where $n \in N \cup \{0\}$.

For other definitions of the fractional calculus, see T. J. Osler [5], B. Ross [9], K. Nishimoto [4] and M. Saigo [10].

estable to the state

LEMMA 1. Let a function

$$f(z) \equiv z - \sum_{n=2}^{\infty} a_n z^n \qquad (a_n \ge 0)$$

be in the class S(k). Then we have

$$|z| - \frac{2k}{1+3k}|z|^2 \le |f(z)| \le |z| + \frac{2k}{1+3k}|z|^2$$

and

$$1 - \frac{4k}{1 + 3k} |z| \le |f'(z)| \le 1 + \frac{4k}{1 + 3k} |z|$$

for z∈U. The equalities hold for the function

$$f(z) = z - \frac{2k}{1+3k}z^2$$
.

PROOF. By using Theorem 1, we have the state of gains all states

$$\sum_{n=2}^{\infty} a_n \le \frac{2k}{1+3k}$$

and

$$\sum_{n=2}^{\infty} n a_n \leq \frac{4k}{1+3k}.$$

Hence we have

$$|f(z)| \leq |z| + |z|^{2} \sum_{n=2}^{\infty} a_{n}$$

$$\leq |z| + \frac{2k}{1+3k} |z|^{2},$$

$$|f(z)| \geq |z| - |z|^{2} \sum_{n=2}^{\infty} a_{n}$$

$$\geq |z| - \frac{2k}{1+3k} |z|^{2},$$

$$|f'(z)| \leq 1 + |z| \sum_{n=2}^{\infty} n a_{n}$$

$$\leq 1 + \frac{4k}{1+3k} |z|$$

and

$$|f'(z)| \ge 1 - |z| \sum_{n=2}^{\infty} na_n$$
$$\ge 1 - \frac{4k}{1+3k} |z|$$

for $z \in U$.

TENS TO

100

LEMMA 2. Let a function

$$f(z) = z - \sum_{n=2}^{\infty} a_n z^n \qquad (a_n \ge 0)$$

be in the class C(k). Then we have

$$|z| - \frac{k}{1+3k}|z|^2 \le |f(z)| \le |z| + \frac{k}{1+3k}|z|^2$$

and

$$1 - \frac{2k}{1 + 3k} |z| \le |f'(z)| \le 1 + \frac{2k}{1 + 3k} |z|$$

for z∈U. The equalities hold for the function

$$f(z) = z - \frac{k}{1+3k}z^2$$
.

PROOF. By using Theorem 2, we have

$$\sum_{n=2}^{\infty} a_n \leq \frac{k}{1+3k}$$

and

$$\sum_{n=2}^{\infty} n a_n \leq \frac{2k}{1+3k}.$$

Therefore, we have

$$|f(z)| \leq |z| + |z|^{2} \sum_{n=2}^{\infty} a_{n}$$

$$\leq |z| + \frac{k}{1+3k} |z|^{2},$$

$$|f(z)| \geq |z| - |z|^{2} \sum_{n=2}^{\infty} a_{n}$$

$$\geq |z| - \frac{k}{1+3k} |z|^{2},$$

$$|f'(z)| \leq 1 + |z| \sum_{n=2}^{\infty} na_{n}$$

$$\leq 1 + \frac{2k}{1+3k} |z|$$

and

$$|f'(z)| \ge 1 - |z| \sum_{n=2}^{\infty} na_n$$
$$\ge 1 - \frac{2k}{1 + 3k} |z|$$

for $z \in U$.

THEOREM 5. Let a function

$$f(z) = z - \sum_{n=2}^{\infty} a_n z^n \qquad (a_n \ge 0)$$

be in the class S(k). Then we have

$$\begin{split} |D_{z}^{-\alpha}f(z)| & \geq \frac{|z|^{1+\alpha}(1+3k-2k|z|)}{(1+3k)\Gamma(2+\alpha)}, \\ |D_{z}^{-\alpha}f(z)| & \leq \frac{|z|^{1+\alpha}(1+3k+2k|z|)}{(1+3k)\Gamma(2+\alpha)}, \\ |D_{z}^{1-\alpha}f(z)| & \geq \frac{|z|^{\alpha}\{(1+3k)(1-\alpha)-2k(2+\alpha)|z|\}}{(1+3k)\Gamma(2+\alpha)}. \end{split}$$

and

$$|D_z^{1-\alpha}f(z)| \le \frac{|z|^{\alpha}\{(1+3k)(1+\alpha)+2k(2+\alpha)|z|\}}{(1+3k)\Gamma(2+\alpha)}$$

for $0 < \alpha < 1$ and $z \in U$.

PROOF. Let

$$F(z) = \Gamma(2+\alpha)z^{-\alpha}D_z^{-\alpha}f(z)$$

$$= z - \sum_{n=2}^{\infty} \frac{\Gamma(n+1)\Gamma(2+\alpha)}{\Gamma(n+1+\alpha)} a_n z^n.$$

Then we have

$$\begin{split} &\sum_{n=2}^{\infty} \{(n-1) + k(n+1)\} \frac{\Gamma(n+1)\Gamma(2+\alpha)}{\Gamma(n+1+\alpha)} a_n \\ &\leq &\sum_{n=2}^{\infty} \{(n-1) + k(n+1)\} a_n \\ &\leq &2k, \end{split}$$

because

$$0 < \frac{\Gamma(n+1)\Gamma(2+\alpha)}{\Gamma(n+1+\alpha)} < 1.$$

Consequently, the function F(z) belongs to the class S(k) by Theorem 1. Hence we have the theorem with the aid of Lemma 1.

COROLLARY 1. Under the hypotheses of Theorem 5, $D_z^{-\alpha}f(z)$ and $D_z^{1-\alpha}f(z)$ are included in the disks with center at the origin and radii $(1+5k)/(1+3k)\Gamma(2+\alpha)$ and $(1+\alpha+5k\alpha+7k)/(1+3k)\Gamma(2+\alpha)$, respectively.

(DE.+)

THEOREM 6. Let a function

$$f(z) = z - \sum_{n=2}^{\infty} a_n z^n \qquad (a_n \ge 0)$$

material a ball in Particular

in the first date of the There are the

be in the class C(k). Then we have

$$|D_{z}^{-\alpha}f(z)| \ge \frac{|z|^{1+\alpha}(1+3k-k|z|)}{(1+3k)\Gamma(2+\alpha)},$$

$$|D_{z}^{-\alpha}f(z)| \le \frac{|z|^{1+\alpha}(1+3k+k|z|)}{(1+3k)\Gamma(2+\alpha)},$$

$$|D_{z}^{1-\alpha}f(z)| \ge \frac{|z|^{\alpha}\{(1+3k)(1-\alpha)-k(2+\alpha)|z|\}}{(1+3k)\Gamma(2+\alpha)}.$$

and

$$|D_{z}^{1-\alpha}f(z)| \leq \frac{|z|^{\alpha}\{(1+3k)(1+\alpha)+k(2+\alpha)|z|\}}{(1+3k)\Gamma(2+\alpha)}$$

for $0 < \alpha < 1$ and $z \in U$.

The proof of Theorem 6 is obtained by using the same technique as in the proof of Theorem 5 with the aid of Lemma 2.

COROLLARY 2. Under the hypotheses of Theorem 6, $D_z^{-\alpha}f(z)$ and $D_z^{1-\alpha}f(z)$ are included in the disks with center at the origin and radii $(1+4k)/(1+3k)\Gamma(2+\alpha)$ and $(1+\alpha+4k\alpha+5k)/(1+3k)\Gamma(2+\alpha)$, respectively.

THEOREM 7. Let a function

$$f(z) = z - \sum_{n=2}^{\infty} a_n z^n \qquad (a_n \ge 0)$$

be in the class C(k). Then we have

$$|D_z^{\alpha} f(z)| \ge \frac{|z|^{1-\alpha} (1+3k-2k|z|)}{(1+3k)\Gamma(2-\alpha)}$$

and

$$|D_z^{\alpha}f(z)| \leq \frac{|z|^{1-\alpha}(1+3k+2k|z|)}{(1+3k)\Gamma(2-\alpha)}$$

for $0 < \alpha < 1$ and $z \in U$ and

$$|D_{z}^{1+\alpha}f(z)| \ge \frac{|z|^{-\alpha}\{(1+3k)(1-\alpha)-2k(2+\alpha)|z|\}}{(1+3k)\Gamma(2-a)}$$

and

$$|D_{z}^{1+\alpha}f(z)| \leq \frac{|z|^{-\alpha}\{(1+3k)(1+\alpha)+2k(2+\alpha)|z|\}}{(1+3k)\Gamma(2+\alpha)}$$

for $0 < \alpha < 1$ and $z \in U - \{0\}$.

PROOF. Let

$$G(z) = \Gamma(2-\alpha)z^{\alpha}D_{z}^{\alpha}f(z)$$

$$= z - \sum_{n=2}^{\infty} \frac{\Gamma(n+1)\Gamma(2-\alpha)}{\Gamma(n+1-\alpha)} a_{n}z^{n}.$$

Then we have

$$\begin{split} & \sum_{n=2}^{\infty} \left\{ (n-1) + k(n+1) \right\} \frac{\Gamma(n+1)\Gamma(2-\alpha)}{\Gamma(n+1-\alpha)} a_n \\ & \leq \sum_{n=2}^{\infty} n \left\{ (n-1) + k(n+1) \right\} a_n \\ & \leq 2k, \end{split}$$

for

$$0 < \frac{\Gamma(n+1)(\Gamma(2-\alpha))}{\Gamma(n+1-\alpha)} < n$$

and $f(z) \in C(h)$. Accordingly, the function G(z) is in the class S(h) by means of Theorem 1. Therefore, we have the theorem by using Lemma 1.

COROLLARY 5. Under the hypotheses of Theorem 7, $D_z^{\alpha}f(z)$ and $D_z^{1+\alpha}f(z)$ are included in the disks with center at the origin and radii (1+5k)/(1+3k) $\Gamma(2-\alpha)$ and $(1+\alpha+5k\alpha+7k)/(1+3k)\Gamma(2-\alpha)$, respectively.

Kinki University, Osaka, Japan.

REFERENCES

- F. Holland and D.K. Thomas, On the order of a starlike function, Trans. Amer. Math. Soc., 158(1971), 189-201.
- [2] R. J. Libera, Some radius of convexity problems, Duke Math. J., 31(1964), 143-158.
- [3] M. L. Mogra, On a class of starlike functions in the unit disc I, J. Indian Math. Soc., 40(1976), 159-161.
- [4] K. Nishimoto, Fractional derivative and integral Part I, J. Coll. Engrg. Nihon Univ., 17(1976), 11-19.
- [5] T. J. Osler, Leibniz rule for fractional derivative generalized and an application to infinite series, SIAM J. Appl. Math., 16(1970), 658-674.

- [6] S. Owa, On the distortion theorems I, Kyungpook Math. J., 18(1978), 53-59.
- [7] K.S. Padmanabhan, On certain classes of starlike functions in the unit disc, J. Indian Math. Soc., 32(1968), 89—103.
- [8] M.S. Robertson, On the theory of univalent functions, Ann, Math., 37(1936), 374-408.
- [9] B. Ross, A brief history and exposition of the fundamental theory of fractional calculus, Lecture Notes in Mathematics, 457(1975), 1-36.
- [10] M. Saigo, A remark on integral operators involving the Gauss hypergeometric functions, Math. Rep. Kyushu Univ., 11(1978), 135-143.