GENERIC SUBMANIFOLDS OF A QUATERNIONIC PROJECTIVE SPACE WITH COMMUTATIVE SECOND FUNDAMENTAL FORMS

By Jin Suk Pak

A submanifold M of a quaternionic projective space $Q P^{m}$ of real dimension $4 m$ is called a generic submanifold if the normal space $N_{P}(M)$ of M at P is always mapped into the tangent space $T_{P}(M)$ at P under the action of the quaternionic Kaehlerian structure tensors of the ambient manifold at the same time (Cf. Y. Shibuya [8]). Any real hypersuface of a quaternionic projective space is a generic submanifold.

In 1970, Lawson [4] determined real hypersurfaces of $Q P^{m}$ by using the method of Riemannian fibre bundles which are compatible with the Hopf-fibration $S^{4 m+3}(1) \rightarrow Q P^{m}$, where $S^{4 m+3}$ (1) denotes the unit sphere of dimension $4 m+3$. Recently Shibuya [8] developed the method of Lawson in the case of generic submanifolds immersed in $Q P^{m}$. By using the same method the present author [6], [7] and Kang [7] have studied the following theorems:

THEOREM A. (see [7]). Let M be an n-dimensional complete, generic submanifold of a quaternionic projective space $Q P^{(n+p) / 4}$ with flat normal connection. If (2.1) appeared in $\S 2$ are valid at each point of M and if the mean curvature vector defined of M is parallel in the normat bundle, then M is of the form

$$
\pi\left(S^{p_{1}}\left(r_{1}\right) \times \cdots \times S^{p_{N}}\left(r_{N}\right)\right),
$$

$p_{1}, \cdots, p_{N} \leqq 1, p_{i}=4 l_{i}+3\left(l_{i}:\right.$ non-negative integer $), \sum_{i} p_{i}=n+3, \sum_{i} r_{i}^{2}=1, N$ $=p+1$, where π denote the natural projection of $S^{4 m+3}(1)$ onto $Q P^{m}$ which is defined by the Hopf-fibration.

THEOREM B. (see [5]). Let M be a complete real hypersurface of $Q P^{m}$. If (2.1)) appeared in $\S 2$ are valid at each point of M, then M is of the form

$$
\pi\left(S^{4 p+3}(a) \times S^{4 q+3}(b)\right)
$$

for some portion (p, q) of $m-1$ and some a, b such that $a^{2}+b^{2}=1$.

[^0]For a generic submanifold M of a quaternionic projective space, it is easily seen from the equation (1.13) of Ricci that there is no relationship between the flatness of the normal connection of M and the commutativity of the second fundamental forms.

In the present paper we study generic submanifolds of quaternionic projective spaces with commutative second fundamental forms and determine such submanifolds by using Theorem B (see Theorem 4).

Manifolds, submanifolds, geometric objects and mappings we dicuss in this paper will be assumed to be differentiable and of class C^{∞}.

1. Generic submanifolds of a quaternionic Kaehlerian manifold

Let \bar{M} be an $(n+p)$-dimensional quaternionic Kaehlerian manifold covered by a system of coordinate neighborhoods $\left\{\bar{U} ; y^{i}\right\}$ (here and in the sequel the indices h, i, j, k, t, s run over the range $\{1,2, \cdots, n+p\}$. Then, by definition there exists a 3-dimensional vector bundle V consisting of tensors of type (1,1) over \bar{M} satisfying the following conditions (1), (2) and (3):
(1) In any coordinate neighborhood \bar{U}, there is a local base $\{F, G, H\}$ of V such that

$$
\begin{gather*}
F_{h}^{i} F_{j}^{h}=-\delta_{j}^{i}, \quad G_{h}^{i} G_{j}^{h}=-\delta_{j}^{i}, \quad H_{h}^{i} H_{j}^{h}=-\delta_{j}^{i}, \tag{1.1}\\
G_{h}^{i} H_{j}^{h}=-H_{h}^{i} G_{j}^{h}=F_{j}^{i}, \quad F_{h}^{i} G_{j}^{h}=-G_{h}^{i} F_{j}^{h}=H_{j}^{i}, \quad H_{h}^{i} F_{j}^{h}=-F_{i}^{h} H_{j}^{h}=G_{j}^{i},
\end{gather*}
$$

where F_{j}^{i}, G_{j}^{i} and H_{j}^{i} denote the local components of F, G and H in \bar{U} respectively.
(2) There is a Riemannian metric tensor $g_{j i}$ such that

$$
\begin{equation*}
F_{j i}=-F_{i j}, \quad G_{j i}=-G_{i j}, \quad H_{j i}=-H_{i j}, \tag{1.2}
\end{equation*}
$$

where $F_{j i}=g_{i h} F_{j}^{h}, G_{j i}=g_{i h} G_{j}^{h}$ and $H_{j i}=g_{i h} H_{j}^{h}$.
(3) For the operator ∇_{j} of the covariant differentiation with respect to the Riemannian connection

$$
\begin{align*}
& \nabla_{j} F_{i}^{h}=r_{j} G_{i}^{h}-q_{j} H_{i}^{h} \tag{1.3}\\
& \nabla_{j} G_{i}^{h}=-r_{j} F_{i}^{h}+p_{j} H_{i}^{h} \\
& \nabla_{j} H_{i}^{h}=q_{j} F_{i}^{h}-p_{j} G_{i}^{h}
\end{align*}
$$

where $p=p_{i} d y^{i}, q=q_{i} d y^{i}$ and $r=r_{i} d y^{i}$ are certain local 1-forms defined in \bar{U}.

Such a local base $\{F, G, H\}$ is called a canonical base of the bundle V in \bar{U} (see Ishihara [1] etc.).
Let M be an n-dimensional submanifold immersed in \bar{M}. Then M is covered by a system of coordinate neighborhoods $\left\{U ; x^{a}\right\}, U=\bar{U} \cap M$ (here and in the sequel the indices $a, b, c, d, e \cdots$ run over the range $\{1,2, \cdots, n\}$). Let M be represented by $y^{i}=y^{i}\left(x^{a}\right)$ with respect to local coordinates $\left(y^{i}\right)$ in \bar{U} and $\left(x^{a}\right)$ in U. We put

$$
B_{a}^{i}=\partial_{a} y^{i} \quad\left(\partial_{a}=\partial / \partial x^{a}\right)
$$

and denote by $N_{x}^{i} p$ mutually orthogonal unit vectors normal to M (here and in the sequel the indices $x, y, z, v, w \cdots$ run over the range $\{n+1, \cdots, n+p\}$). Putting

$$
g_{b a}=g_{j i} B_{b}^{j} B_{a}^{i}, \quad g_{y x}=g_{j i} N_{y}^{j} N_{x}^{2},
$$

they are the induced metric tensors of M and of the normal bundle respectively.
If the transforms by F, G and H of any vector normal to M are always tangent to M at the same time, then the submanifold M is called a generic submanifold (see Shibuya [8] etc.). In such case, since the ranks of F, G and H are all $u+p$, we have $n \geqq 3 p$.
For a generic submanifold M of \bar{M}, we can put in each coordinate neighborhood U

$$
\begin{gather*}
F_{h}^{i} B_{a}^{h}=\phi_{b}^{b} B_{b}^{i}+\phi_{a}^{x} N_{x^{i}}^{i}, F_{h}^{i} N_{x}^{h}=-\phi_{x}^{a} B_{a^{\prime}}^{i} \\
G_{h}^{i} B_{a}^{h}=\Psi_{a}^{b} B_{b}^{i}+\Psi_{a}^{x} N_{x}^{i}, G_{h}^{i} N_{x}^{h}=-\Psi_{x}^{a} B_{a^{\prime}}^{i} \tag{1.4}\\
H_{h}^{i} B_{a}^{h}=\theta_{a}^{b} B_{b}^{i}+\theta_{a}^{x} N_{x^{\prime}}^{i}, H_{h}^{i} N_{x}^{h}=-\theta_{x}^{a} B_{a^{*}}^{i} .
\end{gather*}
$$

As a consequence of (1.2), we have from (1.4)

$$
\begin{array}{lll}
\phi_{b a}=-\phi_{a b}, & \Psi_{b a}=-\Psi_{a b}, & \theta_{b a}=-\theta_{a b} \tag{1.5}\\
\phi_{a x}=\phi_{x a}, & \Psi_{a x}=\Psi_{x a}, & \theta_{a x}=\theta_{x a},
\end{array}
$$

where we have put $\phi_{b a}=\phi_{b}^{e} g_{e a}, \phi_{a x}=\phi_{a}^{y} g_{y x}$ etc.
Applying F, G, H to (1.4) and using (1.1) and those equations, it follows that

$$
\begin{array}{ccc}
\phi_{b}^{e} \phi_{a}^{e}=-\delta_{a}^{b}+\phi_{a}^{x} \phi_{x}^{b}, & \Psi_{e}^{b} \Psi_{a}^{e}=-\delta_{a}^{b}+\Psi_{a}^{x} \Psi_{x}^{b}, & \theta_{e}^{b} \theta_{a}^{e}=-\delta_{a}^{b}+\delta_{a}^{b}+\theta_{a}^{x} \theta_{x}^{b} \\
\phi_{a}^{e} \phi_{e}^{x}=0, & \Psi_{a}^{e} \Psi_{e}^{x}=0, & \theta_{a}^{e} \theta_{e}^{x}=0 .
\end{array}
$$

$$
\Psi_{e}^{b} \phi_{a}^{e}=-\theta_{a}^{b}+\phi_{a}^{x} \Psi_{x}^{b}, \theta_{e}^{b} \Psi_{a}^{e}=-\phi_{a}^{b}+\Psi_{a}^{x} \theta_{x}^{b}, \phi_{e}^{b} \theta_{a}^{e}=-\Psi_{a}^{b}+\theta_{a}^{x} \phi_{x}^{b}
$$

$$
\begin{align*}
& \phi_{e}^{b} \Psi_{a}^{e}=\theta_{a}^{y}+\Psi_{a}^{x} \phi_{x}^{b}, \Psi_{e}^{b} \theta_{a}^{e}=\phi_{a}^{b}+\theta_{a}^{x} \Psi_{x}^{b}, \theta_{e}^{b} \phi_{a}^{e}=\Psi_{a}^{b}+\phi_{a}^{x} \theta_{x}^{b}, \tag{1.6}\\
& \theta_{a}^{e} \phi_{e}^{x}=-\Psi_{a}^{x}, \Psi_{v}^{e} \theta_{e}^{x}=-\phi_{a}^{x}, \phi_{a}^{e} \Psi_{e}^{x}=-\theta_{a}^{x}, \\
& \phi_{a}^{e} \theta_{e}^{x}=\Psi_{a}^{x}, \theta_{a}^{e} \Psi_{e}^{x}=\phi_{a}^{x}, \Psi_{a}^{e} \phi_{e}^{x}=\theta_{a}^{x}, \\
& \phi_{x}^{a} \Psi_{a}^{y}=0, \Psi_{x}^{a} \theta_{a}^{y}=0, \theta_{x}^{a} \phi_{a}^{y}=0, \phi_{x}^{a} \phi_{a}^{y}=\delta_{x}^{y}, \Psi_{x}^{a} \Psi_{a}^{y}=\delta_{x^{\prime}}^{y}, \theta_{x}^{a} \theta_{a}^{y}=\delta_{x^{*}}^{y}
\end{align*}
$$

We denote by ∇_{b} the operator of the covariant differentiation with respect to the Riemannian connection induced on M from the connection of \bar{M}. Then the equations of Gauss and Weingarten are given by

$$
\begin{equation*}
\nabla_{b} B_{a}^{i}=h_{b a}{ }^{x} N_{x}^{i}, \quad \nabla_{b} N_{x}^{i}=-h_{b a}^{x} B_{a}^{i} \tag{1.7}
\end{equation*}
$$

respectively, where $h_{b a}{ }^{x}$ are components of the second fundamental tensor with respect to the unit normal vector N_{x}^{i} and $h_{b c}{ }^{x}=h_{b e}{ }^{y} g^{e a} g_{y x}$.

Applying the operator $\nabla_{c}=B_{c}^{i} \nabla_{i}$ to (1.4) and using (1.3) and (1.7), we can see that

$$
\begin{align*}
& \nabla_{c} \phi_{a}^{b}=r_{c} \Psi_{a}^{y}-q_{c} \theta_{a}^{b}+h_{c b}^{x} \phi_{a}^{x}-h_{a c}^{x} \phi_{x}^{b} \\
& \nabla_{c} \Psi_{a}^{\prime}=-r_{c} \phi_{a}^{b}+p_{c} \theta_{a}^{b}+h_{c b}^{x} \Psi_{a}^{x}-h_{c a}^{x} \Psi_{x}^{b}, \tag{1.8}\\
& \nabla_{c} \theta_{a}^{b}=q_{c} \phi_{a}^{b}-p_{c} \Psi_{a}^{b}+h_{c b}^{x} \theta_{a}^{x}-h_{c a}^{x} \theta_{x}^{b}, \\
& \nabla_{c} \phi_{a}^{x}=r_{c} \Psi_{a}^{x}-q_{c} \theta_{a}^{x}-h_{c e}^{x} \phi_{a}^{e}, \\
& \nabla_{c} \Psi_{a}^{x}=-r_{c} \phi_{a}^{x}+\hat{P}_{c} \theta_{a}^{x}-h_{c e}^{x} \Psi_{a}^{e}, \tag{1.9}\\
& \nabla_{c} \theta_{x}^{a}=q_{c} \phi_{a}^{x}-p_{c} \Psi_{a}^{x}-h_{c e}^{x} \theta_{a}^{e} \\
& h_{c e}^{x} \phi_{e}^{y}=h_{c e}^{y} \phi_{x}^{e}, h_{c e}^{x} \Psi_{e}^{y}=h_{c e}^{y} \Psi_{x}^{e}, \quad h_{c e}^{x} \theta_{e}^{y}=h_{c e}^{y} \theta_{x^{\prime}}^{e}, \tag{1.10}
\end{align*}
$$

where $p_{c}=p_{i} B_{c}^{i}, q_{c}=q_{i} B_{c}^{i}$ and $r_{c}=r_{i} B_{c}^{t}$.
If the ambient manifold \bar{M} is a quaternionic Kaehlerian manifold with constant Q-sectional curvature c, then $K_{k j i}{ }^{h}$ the components of the curvature tensor of \bar{M} are of the form

$$
\begin{aligned}
K_{k j i}^{h}=\frac{c}{4} & \left(\delta_{k}^{h} g_{j}^{i}-\delta_{j j_{i k}^{h}}^{h}+F_{k}^{h} F_{i j}-F_{j}^{h} F_{k i}-2 F_{k j} F_{i}^{h}+G_{k}^{h} G_{j i}\right. \\
& \left.-G_{h}^{j} G_{k i}-2 G_{k j} G_{i}^{h}+H_{k}^{k} H_{j i}-H_{j}^{h} H_{k i}-2 H_{k j} H_{i}^{h}\right),
\end{aligned}
$$

where c is necessarily a constant, provided $n+p \geqq 8$ (see Ishihara [1]). Thus the structure equations of Gauss, Codazzi and Ricci are given respectively by

$$
\begin{align*}
K_{d c b}{ }^{r}= & \frac{c}{4}\left(\delta_{d}^{a} g_{c b}-\delta_{c}^{a} g_{d b}+\phi_{d}^{a} \phi_{c b}-\phi_{c}^{a} \phi_{b d}-2 \phi_{d c} \phi_{b}^{a}+\Psi_{d}^{a} \Psi_{c b}-\Psi_{d}^{a} \Psi_{c b}\right. \tag{1.11}\\
& \left.-2 \Psi_{d c} \Psi_{b}^{a}+\theta_{d}^{a} \theta_{c b}-\theta_{c}^{a} \theta_{d b}-2 \theta_{d c} \theta_{b}^{a}\right)+h_{d a}^{x} h_{c b}^{x}-h_{c a}^{x} h_{d b}^{x},
\end{align*}
$$

$$
\begin{array}{r}
\nabla_{c} h_{b a}^{x}-\nabla_{b} h_{c a}^{x}=\frac{c}{4}\left(\phi_{c}^{x} \phi_{b a}-\phi_{b}^{x} \phi_{c a}-2 \phi_{c b}{ }_{a}^{x}+\Psi_{c}^{x} \Psi_{b a}-\Psi_{b}^{x} \Psi_{c a}\right. \tag{1.12}\\
\left.-2 \Psi_{c b} \Psi_{a}^{x}+\theta_{c}^{x} \theta_{b a}-\theta_{b}^{x} \theta_{c a}-2 \theta_{c b} \theta_{a}^{x}\right),
\end{array}
$$

$$
\begin{gather*}
K_{c b y}^{x}=\frac{c}{4}\left(\phi_{c}^{x} \phi_{b y}-\phi_{b}^{x} \phi_{c y}+\Psi_{c}^{x} \Psi_{b y}-\Psi_{b}^{x} \Psi_{c y}+\theta_{c}^{x} \theta_{b y}-\theta_{b}^{x} \theta_{c y}\right) \tag{1.13}\\
+h_{c e}^{x} h_{b y}^{e}-h_{\partial x}^{\prime} h_{c-y}^{e},
\end{gather*}
$$

where $K_{d c b}{ }^{a}$ and $K_{c b y}{ }^{x}$ denote components of the curvature tensors determined by the induced metric $g_{b a}$ and $g_{y x}$ in M and in the normal bundle of M respectively.
2. Some properties concerning with commutativity of the second fundamental forms

Let M be an n-dimensional generic submanifold of an ($n+p$)-dimensional quaternionic Kaehlerian manifold with constant Q-sectional curvature $c(n+p$ $\geqq 8$) which satisfies

$$
\begin{equation*}
h_{b e}{ }^{x} \dot{\phi}_{a}^{e}+h_{a e}{ }^{x} \dot{\phi}_{b}^{e}=0, h_{b e}{ }^{*} \Psi_{a}^{*}+h_{a e}{ }^{x}{ }^{x} \Psi_{b}^{e}=0, h_{b e}{ }^{x} \theta_{a}^{e}+h_{a e}{ }^{x} \theta_{b}^{e}=0 \tag{2.1}
\end{equation*}
$$

at every point of M. For a real hypersurface, denoting by $h_{b a}=h_{b a}^{1}$, the condition (2.1) reduces to

$$
\begin{equation*}
h_{b e} \dot{\phi}_{a}^{e}+h_{a e}{ }_{e}^{\phi_{b}^{e}}=0, h_{b e} \Psi_{a}^{e}+h_{e a} \psi_{b}^{e}=0, h_{b e} \theta_{a}^{e}+h_{a e} \theta_{b}^{e}=0 . \tag{2.1}
\end{equation*}
$$

From now on we assume that M has commutative second fundamental forms, that is,

$$
\begin{equation*}
h_{c e}{ }^{x} h_{b y}^{e}=h_{b e}{ }^{x} h_{c y}^{e} \tag{2.2}
\end{equation*}
$$

are valid at every point of M.
We transvect the first equation of (2.1) with $\phi_{y^{*}}^{\alpha}$. Then, making use of (1.6), we have

$$
\phi_{y^{a} h_{a \ell}{ }^{x} \phi_{j}^{e}=0,}
$$

from which, transvecting with $\dot{\phi}_{c}^{b}$,

$$
\begin{equation*}
h_{b e}{ }^{x} \phi_{y}^{e}=P_{y z}{ }^{x} \phi_{b}^{z}, \tag{2.3}
\end{equation*}
$$

where here and in the sequel we put

$$
\begin{equation*}
P_{y z}^{x}=h_{a b}^{x} \phi_{y}^{b} \phi_{z^{*}}^{a} \tag{2.4}
\end{equation*}
$$

From the other equations of (2.1) we can similarily obtain

$$
\begin{equation*}
h_{b e}^{x} \Psi_{y}^{e}=Q_{y z}^{x} \Psi_{b}^{z}, \quad h_{b e}^{x} \theta_{y}^{e}=R_{y z}^{x} \theta_{b}^{z}, \tag{2.5}
\end{equation*}
$$

where $Q_{y z}{ }^{x}=h_{b a}{ }^{x} \Psi_{y}^{b} \Psi^{W_{z}^{a}}$ and $R_{y z}{ }^{x}=h_{b a}{ }^{x} \theta_{y}^{b} \theta_{z^{*}}^{a}$. By the way, transvecting the second equation of (2.1) with ϕ_{y}^{b}, we get

$$
P_{y z}^{x} \phi_{e}^{z} \Psi_{a}^{e}-h_{a e}^{x} \theta_{y}^{e}=0,
$$

which and (2.5) yield

$$
\left(P_{y z}^{x}-R_{y z}^{x}\right) \theta_{a}^{z}=0
$$

and consequently

$$
P_{y z}^{x}=R_{y z}{ }^{x} .
$$

Hence, by the quite similar way, we can see that

$$
\begin{equation*}
P_{y z}^{x}=Q_{y z}{ }^{x}=R_{y z}{ }^{x} \tag{2.6}
\end{equation*}
$$

We now apply the operator ∇_{c} to (2.3) and take the skew-symmetric part of the equation thus obtained. Then it follows that

$$
\left(\nabla_{c} h_{b a}^{x}-\nabla_{b} h_{c a}^{x}\right)_{y}^{a}+h_{b a}^{x} \nabla_{c} \phi_{y}^{a}-h_{c a}^{x} \nabla_{b} \phi_{y}^{a}=\left(\nabla_{c} P_{y z}^{x}\right) \phi_{b}^{z}-\left(\nabla_{b} P_{y z}^{x}\right) \phi_{c}^{z}+P_{y z}^{x}\left(\nabla_{c} \phi_{s}^{z}-\nabla_{b} \phi_{c}^{z}\right),
$$

from which, substituting (1.9) and (1.12), we have

$$
\begin{align*}
\frac{c}{4} & \left(-2 \phi_{c b} \delta_{y}^{x}+\Psi_{c}^{x} \theta_{b y}-\Psi_{b}^{x} \theta_{c y}-\theta_{c}^{x} \Psi_{b y}+\theta_{b}^{x} \Psi_{c y}\right)+h_{b a}^{x} h_{c e}^{y} \phi_{e}^{a}-h_{c a}^{x} h_{b e}^{y} \phi_{e}^{a} \tag{2.7}\\
& =\left(\nabla_{c} P_{y z}^{x}\right) \phi_{b}^{z}-\left(\nabla_{b} P_{y z}^{x}\right) \phi_{c}^{z}+P_{y z}^{x}\left(-h_{c e}^{z} \phi^{e}+h_{b e}^{z} \phi_{c}^{e}\right) .
\end{align*}
$$

Transvecting (2.7) with ϕ_{w}^{b} and using (1.6) and (2.1), we have

$$
\nabla_{c} P_{y w}^{x}=\phi_{w}^{b}\left(\nabla_{b} P_{y z}^{x}\right) \phi_{c^{\prime}}^{z}
$$

from which, transvecting with ϕ_{a}^{y},

$$
\begin{equation*}
\left(\nabla_{c} P_{y w}{ }^{x}\right) \phi_{a}^{y}=\phi_{w}^{b}\left(\nabla_{b} P_{y z}^{x}\right) \phi_{c}^{z} \phi_{a^{*}}^{y} \tag{2.8}
\end{equation*}
$$

On the other hand, putting $P_{y z x}=P_{y z}{ }^{w} g_{w x}$, it easily follows from (1.10) and the definition (2.4) of $P_{y z}^{x}$ that $P_{y z x}$ are symmetric with respect to all indices. Hence (2.8) gives

$$
\left(\nabla_{c} P_{y w}^{x}\right) \phi_{a}^{y}=\left(\nabla_{a} P_{y w}^{x}\right) \phi_{c}^{y},
$$

which and (2.7) imply

$$
\begin{equation*}
\frac{c}{8}\left(-2 \phi_{c b} \delta_{y}^{x}+\Psi_{c}^{x} \theta_{b y}-\Psi_{b}^{x} \theta_{c y}-\theta_{c}^{x} \Psi_{b y}+\theta_{b}^{x} \Psi_{c y}\right)+h_{a e}^{x} h_{b y}^{e} \phi_{c}^{a}=P_{y z}^{x} h_{b e}^{z} \phi_{c}^{e}, \tag{2.9}
\end{equation*}
$$

where we have used the assumption that the second fundamental tensors are commutative i. e. that (2.2) is valid at every point of M.

We transvect (2.9) with ϕ_{d}^{c} and use (1.6). Then we have

$$
\begin{align*}
& \frac{c}{8}\left\{2\left(g_{d b}-\phi_{d}^{z} \phi_{z b}\right) \delta_{y}^{x}-\Psi_{d}^{x} \Psi_{b y}-\Psi_{b}^{x} \Psi_{d y}-\theta_{b}^{x} \theta_{d y}-\theta_{d}^{x} \theta_{d y}\right\}-h_{d e}{ }^{x} h_{b y}^{e} \tag{2.10}\\
& +h_{a e}^{x} h_{b y}^{e} \phi_{d}^{z} \phi_{z}^{a}=-P_{y z}^{x} h_{d b}^{z}+P_{y z}^{x} h_{b e}^{z} \phi_{d}^{w} \phi_{b b^{e}}^{e}
\end{align*}
$$

On the other hand, a direct computation by using (2.2) and (2.3) implies

$$
\begin{aligned}
P_{y z}^{x} h_{b e}^{z} \phi_{d}^{w} \phi_{w}^{e} & =h_{c a}^{x} \phi_{y}^{c} \phi_{z}^{a} h_{a e}^{z} \phi_{d}^{w} \phi_{w}^{e} \\
& =h_{c a}^{x} \phi_{y}^{c} \phi_{z}^{a} h_{b e w} \phi_{d}^{w} \phi^{z e} \\
& =h_{c a}^{x} \phi_{j}^{c}\left(g^{a e}+\phi_{s}^{a} \phi^{e s}\right) h_{b e w} \phi_{d}^{w} \\
& =h_{c a}^{x} \phi_{y}^{c} h_{b z}^{a} \phi_{a}^{z} \\
& =h_{b a}^{x} h_{c z}^{a} \phi_{y}^{c} \phi_{d}^{w} \\
& =h_{a c}^{x} h_{b y}^{a} \phi_{z}^{c} \phi_{d}^{z}
\end{aligned}
$$

with the help of (1.10). Consequently (2.10) becomes

$$
\begin{equation*}
h_{b e}^{x} h_{a y}^{e}=P_{y z}^{x} h_{b a}^{z}+\frac{c}{8}\left\{2\left(g_{b a}-\phi_{\dot{b}}^{a}-\phi_{z a}\right) \delta_{y}^{x}-\Psi_{b}^{x} \Psi_{a}^{y}-\Psi_{a}^{x} \Psi_{b y}-\theta_{b}^{x} \theta_{a y}-\theta_{a}^{x} \theta_{b y}\right\} \tag{2.11}
\end{equation*}
$$

and also

$$
\begin{equation*}
h_{b a}^{x} h_{x}^{b a}=P_{x} h^{x}+\frac{c}{4} p(n-p-2), \tag{2.12}
\end{equation*}
$$

where here and in the sequel we put $h^{x}=h_{b a}^{x} g^{b a}, P_{x}=P_{y z x} g^{y z}$ and $h^{b a}{ }_{x}=h_{c}{ }^{a}{ }_{x} g^{c b}$.
We next prove
LEMMA 1. Let M be an n-dimensional generic submanifold of an ($n+p$)dimensional quaternionic Kaehlerian manifold with constant Q-sectional curvature $c(n+p \geqq 8)$. If (2.1) are valid and the second fundamental tensors are commutative at each point of M, then

$$
\begin{equation*}
\nabla_{c} P^{x}=\nabla_{c} h^{x} \tag{2.13}
\end{equation*}
$$

PROOF. Applying the operator ∇_{c} to the first equation of (2.1), we have

$$
\left(\nabla_{c} h_{b e}{ }^{x}\right) \dot{\phi}_{a}^{e}+h_{b e}{ }^{x}\left(h_{c y}^{e} \phi_{a}^{y}-h_{c a}^{y} \phi_{y}^{\epsilon}\right)+\left(\nabla_{c} h_{a e}{ }^{z}\right) \dot{\phi}_{b}^{e}+h_{a e}{ }^{x}\left(h_{c y}^{e} \phi_{b}^{y}-h_{c o}^{y} \phi_{y}^{e}\right)=0,
$$

from which, substituting (2.11),

$$
\begin{gathered}
\left(\nabla_{c} h_{b e}{ }^{x}\right) \phi_{a}^{e}+\left(\nabla_{c} h_{a e}^{x}\right) \phi_{b}^{e}+\frac{c}{8}\left(\left\{2\left(g_{b c}-\phi_{b}^{z} \phi_{z}^{c}\right) \delta_{y}^{x}-\Psi_{b}^{x} \Psi_{c y}-\Psi_{c}^{x} \Psi_{b y}-\theta_{b}^{x} \theta_{c y}-\theta_{c}^{x} \theta_{b y}\right\} \phi_{a}^{y}\right. \\
\left.+\left\{2\left(g_{a c}-\phi_{a}^{z} \phi_{z c}\right) \delta_{y}^{x}-\Psi_{d}^{x} \Psi_{c y}-\Psi_{c}^{x} \Psi_{a y}-\theta_{a}^{x} \theta_{c}^{y}-\theta_{c x} \theta_{a}^{y}\right\} \phi_{b}^{y}\right)=0 .
\end{gathered}
$$

Transvecting this equation with ϕ_{d}^{a}, we find

$$
-\nabla_{c} h_{b d}^{x}+\left(\nabla_{c} h_{b e}^{x}\right) \phi_{d}^{y} \phi_{y}^{e}+\left(\nabla_{c} h_{a e}^{x}\right) \phi_{d a} \phi_{b}^{e}+\left\{2 \phi_{d c} \delta_{y}^{x}+\theta_{d}^{x} \Psi_{c y}+\Psi_{c}^{x} \theta_{d y}-\Psi_{d}^{x} \theta_{c y}-\theta_{c}^{x} \Psi_{d y}\right\} \phi_{b}^{y}=0,
$$

from which, contracting with respect to the indices c and d and using the equation (1.12) of Codazzi, it can be easily verified that

$$
\begin{equation*}
\nabla_{b} h^{x}=\left(\nabla_{b} h_{c e}^{x}\right) \phi^{c y} \phi_{y}^{e} . \tag{2.14}
\end{equation*}
$$

On the other hand

$$
P^{x}=h_{c e}^{x} \phi_{y}^{c} \phi^{y e},
$$

from which, applying the operator ∇_{b} and using (1.6) and (2.3), we can obtain

$$
\nabla_{b} P^{x}=\left(\nabla_{b} h_{c e}^{x}\right) \phi^{c y} \phi_{y}^{e}=\nabla_{b} h^{x} .
$$

3. Main theorems

Before we state our main results we introduce the following lemma, which is a direct consequence of the equation (1.12) of Codazzi.

LEMMA 2. (for details see [6]). On an n-dimensional generic submanifold of a quaternionic Kaehlerian manifold of dimension $(n+p) \geqq 8)$ with constant Q sectional curvature c, the following inequalities are valid:

$$
\left\|\nabla_{c} h_{b a}^{x}\right\|^{2} \geqq \frac{3}{8} c^{2} p(n-p-2) .
$$

Let M be an n-dimensional generic submanifold of an ($n+p$)-dimensional quaternionic Kaehlerian manifold with constant Q-sectional curvature $c(n+p \geqq 8)$. Suppose that at each point of $M(2.1)$ are valid and the second fundamental tensors are commutative.

Now we compute the Laplacian ΔL of the function $L=h_{a b}^{x} h_{x}^{b a}$ globally defined on M, where $\Delta=g^{d c} \nabla_{d} \nabla_{c}$. Then we have by definition

$$
\frac{1}{2} \Delta L=g^{d c}\left(\nabla_{d} \nabla_{c} h_{b a}^{x}\right) h_{x}^{b a}+\left\|\nabla_{c} h_{b a}^{x}\right\|^{2},
$$

or using (1.12) and Ricci identity,

$$
\begin{aligned}
\frac{1}{2} \Delta L= & \left(\nabla_{b} \nabla_{a} h^{x}\right) h_{x}^{b a}+K_{b}^{e} h_{c a}^{x} h_{x}^{a}-K_{c b a}^{e} h_{e}^{c x} h_{x}^{b a}+\frac{c}{4}\left\{3\left(-h_{e}^{c x} \phi_{b}^{e} \phi_{a c}-h_{c e}^{x} \Psi_{b}^{e} \Psi_{a}^{c}-h_{c e}^{x} \theta_{b}^{e} \theta_{a}^{c}\right)\right. \\
& \left.+3 \phi_{b}^{x}\left(h_{y} \phi_{a}^{y}-h_{c a}^{y} \phi_{y}^{c}\right)+3 \Psi_{b}^{x}\left(h_{y} \Psi_{a}^{y}-h_{c a}^{y} \Psi_{y}^{c}\right)+3 \theta_{b}^{x}\left(h_{y} \theta_{a}^{y}-h_{c a}^{y} \theta_{y}^{c}\right)\right\} h_{x}^{b a}+\left\|\nabla_{c} h_{b a}^{x}\right\|^{2} .
\end{aligned}
$$

with the help of (1.8) and (1.9), where K_{b}^{a} denotes the local component of the Ricci tensor of M which is of the form

$$
K_{b}^{a}=\frac{c}{4}\left\{(n-8) \delta_{b}^{a}-3\left(\phi_{b}^{y} \phi_{y}^{a}+\Psi_{b}^{y} \Psi_{y}^{a}+\theta_{b}^{y} \theta_{y}^{a}\right)\right\}+h_{x} h_{b}^{a x}-h_{b}^{e} h_{e}^{a x}
$$

because of (1.11).
Hence, by using (1.11), (2.1) and (2.2), we can easily obtain

$$
\begin{align*}
\frac{1}{2} \Delta L= & \left(\nabla_{b} \nabla_{a} h^{x}\right) h_{x}^{b a}+\frac{c}{4}\left\{(n-9) h_{b a}^{x} h_{x}^{b a}-h^{x} h_{x}+3 h_{y}\left(\phi_{b}^{x} \phi_{a}^{y}+\Psi_{b}^{x} \Psi_{a}^{y}\right.\right. \tag{3.1}\\
& \left.\left.+\theta_{b}^{x} \theta_{a}^{y}\right) h_{x}^{b a}\right\}+h_{y} h_{b}^{e y} h_{e a}^{x} h_{x}^{b a}-\left(h_{c e}^{y} h_{x}^{c e}\right)\left(h_{b a y} h_{b}^{a x}\right)+\left\|\nabla_{c} h_{b a}^{x}\right\|^{2} .
\end{align*}
$$

On the other hand, a simple calculation by using (2.11) gives the following identities:

$$
\begin{align*}
& h_{y} h_{b}^{e y} h_{e a}^{x} h_{x}^{b a}=h_{y} P_{z} P_{x}^{y z} h^{x}+\frac{c}{4}\left\{(n-2 p-4) h_{x} P^{x}+p h_{x} h^{x}\right\}, \tag{3.2}\\
& \left(h_{c e}^{y} h_{x}^{c e}\right)\left(h_{y}^{b a} h_{b c}^{x}\right)=P_{x z}^{y} P_{y w}^{x} h^{z} h^{z o}+\frac{c}{2}(n-p-2) P_{x} h^{x}+p\left\{\frac{c}{4}(n-p-2)\right\}^{2} . \tag{3.3}
\end{align*}
$$

Substituting (3.2) and (3.3) into (3.1), it follows that

$$
\begin{align*}
\frac{1}{2} \Delta L=\left(\nabla_{b} \nabla_{a} r^{x}\right) h_{x}^{b a}+ & \frac{c}{4}(p-1) h_{x} h^{x}+\frac{c^{2}}{16} p(p-1)(n-p-2)+P_{y z}^{x} P_{z} h^{x} r^{y} \tag{3.4}\\
& -P_{x z}^{y} P_{y w}^{x} h^{z} h^{w}+\left\{\left\|\nabla_{c} h_{b a}^{x}\right\|^{2}-\frac{3}{8} c^{2} p(n-p-2)\right\} .
\end{align*}
$$

Moreover, by means of (2.1), (2.4) and (2.11), it is easily verified that

$$
\begin{aligned}
& P_{x z}^{y} P_{y w}^{x} h^{z} h^{w}=h_{b c}^{y} \phi_{x}^{b} \phi_{z}^{c} h_{a d}^{x} \phi_{y}^{a} \phi_{t w}^{d} h^{z} h^{t w} \\
& =h_{b c}^{z} h_{a d}^{x}\left(\phi_{e}^{c} \phi^{a e}+g^{c a}\right) \phi_{x}^{b} \phi_{w}^{d} h^{z} h^{w} \\
& =h_{b c x} h_{d}^{c x} \phi_{z}^{b} \phi_{w}^{d} h^{z} h^{w} \\
& =\left(P_{x} h_{b d}^{x}+\frac{c}{8}\left\{2 p\left(g_{b d}-\phi_{b}^{x} \phi_{x d}\right)-2 \Psi_{b}^{x} \Psi_{x}^{d}-2 \theta_{b}^{x} \theta_{x d}\right) \times \phi_{z}^{b} \phi_{z d^{d}} h^{z} h^{z w}\right. \\
& =P_{x} P_{z w}^{x} h^{2} \hbar^{w} \text {. }
\end{aligned}
$$

Consequently substituting this equation into (3.4) yields

$$
\begin{equation*}
\frac{1}{2} \Delta L=\left(\nabla_{b} \nabla_{d} h^{x}\right) h_{b}^{a x}+\frac{c}{4}(p-1) h_{x} h^{x}+\left(\frac{c}{4}\right)^{2} p(p-1)(n-p-2) \tag{3.5}
\end{equation*}
$$

$$
+\left\{\left\|\nabla_{c} h_{b a}^{x}\right\|^{2}-\frac{3}{8} c^{2} p(n-p-2)\right\} .
$$

Thus we have
THEOREM 3. Let M be an n-dimensional generic submanifold of an ($n+p$)dimensional quaternionic Kaehlerian manifold ($n+p \geqq 8$) with constant Q-sectional curvature $c(\geqq 0)$. Suppose that the mean curvature vector of M is parallel in the normal bundle and the second fundamental tensors are commutative. If the equation (2.1) are valid at each point of M, then the ambient manifold is a Euclidean space or the submanifold M is a real hppersurface.

PROOF. If the mean curvature vector $H^{i}=h^{x} N_{x}^{i}$ is parallel in the normal bundle, then $\nabla_{b} \hbar^{x}=0$, and consequently the function L is constant because of (2.11) and Lemma 1. Thus, Lemma 2 and (3.5) imply

$$
c(p-1)(n-p-2)=0
$$

because $c \geqq 0$. Since $n \geqq 3 p, u-p-2 \geqq 2(p-1)$ and consequently

$$
c(p-1)^{2}=0
$$

Hence we have $c=0$ or $p=1$.
Combining Theorem B and Theorem 3, we have
THEOREM 4. Let M be an n-dimensional complete, generic submanifold of a quaternionic projective space $Q P^{(n+p) / 4}$. Suppose that the mean curvature vector of M is parallel in the normal bundle and that the secont fundamental tensors are commutative. If the equation (2.1) are valid at each point of M, then the submanifold M is a real hypersurface and is of the form

$$
\pi\left(S^{4 s+3}\left(r_{1}\right) \times S^{4 t 4+3}\left(r_{2}\right)\right)
$$

for some portion (s, t) of $m-1(m=n+1)$ and some r_{1}, r_{2} such that $r_{1}^{2}+r_{2}^{2}=1$.
REMARK. When the ambient manifold is a Euclidean space, such submanifolds are determined by Ki and the present author in their paper [3].

Kyungpook Uniuevsity

REFERENCES

[1] Ishihara, S., Quaternionic Kaehlerian manifolds, J. Diff. Geometry. 9 (1974), 483 -500 . commutative second fundamental forms
[2] Ishihara, S. and M. Konishi, Differential geomiry of fibred spaces, -Publication of the study group of geometry. Vol. 8, Tokyo, 1973.
[3] Ki, U.H. and J.S. Pak, Generic submanifolds of an even-dimensional Euclidean space, to appear in J. Diff. Geometry.
[4] Lawson, H. B., Jr., Rigidity theorem in rank 1 symmetric spaces, J. Diff. Geometry. 4 (1970), 349-357.
[5] Pak, J.S., Real hypersur faces in quaternionic Kaehlerian manifolds with constant Q-sectional curvature, Kōdai Math. Sem. Rep. 29 (1977), 22-61.
[6] \qquad - Anti-quaternionic submanifolds of a quaternionic projective space, to appear.
[7] Pak, J.S. and T.H. Kang, Generic submanifolds of a quaternionic projective space with parallel mean curvature vector, J. Korean Math. Soc. 17 (1981), 29-46.
[8] Shibuya, Y., Real submanifolds in a quaternionic projective space, Kodai Math. J. 1 (1978), 421-439.
[9] Yano, K. and M. Kon, Generic submanifolds, to appear.

[^0]: Dedicated to Professor Sang-Seup Eum on his 60th birthday

