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ON THE ERROR ANALYSIS OF SOME PIECEWISE CUBIC
INTERPOLATING POLYNOMIALS*

By Ha-Jine Kimn and Hong Gi Kim

1. Introduction

The studies on the interpolating polynomials p(#), which interpolate real
function f(#) at the evenly spacing given knots;

T a=ty <ty ooooee <t,=b
with the constraints;
(6] pU)=fQ), (=0, 1, n),
@ pal=ra), @E=0, 1, n),
3) p(@) is twice differentiable,

are very interesting to applied mathematician. From the Holladay’s minimum
curvature property theorem [4] such polynomials are called cubic interpolating
polynonials.

3v the definition of good approximation, the interpolating polynomial p(f)
with thess constraints must be provided || f(&)—p(®)! for a sufficiently small
e>0, where |+|| is the Tchebycheff norm. However the graphs of such a
interpolating polynomial p(¢) diverge even if € is small enough and force to
occur so called the Runge-Méray phenomena which oscilate at the ends of knots
with large vibration [6]. It has been known that the piecewise interpolating
polynomials can be avoided this phenomena.

In this raper, we derive the error btounds [ f(#)—p(#)| for three major
piecewise interpolating polynomials p(#), i.e. the piecewise cubic Lagrange
polynomial the piecewise cubic Hermite polynomial and ilie cubic B-spline
which have the good approximation to f(#) using the Rolle’s theorem even
though the error bounds for such polynomials have been derived already using
divided difference method by other authors.

2. The error analysis on the piecewise cubic Lagrange polynomial

DEFINITION 2.1. Given real function f(#) and four evenly spacing knots
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8 <t <t 2<t; 4 of the partition 7 of [a, b], a polynomial /4(#) of degrec 3
solving the interpolation problem

I, D=r@,, )., O=k=3 (Ela bl=1[t, 14,
where d is the number of subintervals, is called the piecewise cubic Lagrange
interpolating polynomial to f(1).

It has been known that

where /; ,(#) is Lagrangian (0=%=3) exist and is unique [5].

LEMMA 2.1. Let _f(t)e(,‘4 [@a, 8]. Then there exist a & in the subinterval
[t t; 3] of la, B] such that

(4)
FO=15=LLE =11, )U=t;, DU~ 1;,9.

PROOF. Let i#t,, t,
function g(f) by

+1 livz ti43 be a point in [f, ¢#; .]. We define the

O ORSIOEEO S ZORIO)
where w(t)=(—t)(t—t, DU—t; )(t—t; 5). Since g(¢) has five zeros at the
point 7, £, #; 1 Lot there are four zeros of g’(¢) by Rolle’'s theorem.
Applying the Rolle's theorem repeatedly to g’(#) g”(#) and g(s)(t). there are
at least one zeros of g“)(z‘) in [#, ¢, ,]. Since /3() is a polynomial of degree

i+3

3, 1P =0. Thus we can get
gP0=—rPm-
If we set £ to be gP(@)=0,
£P® =—fO@ - - -rd)=0.

4! L
ORI

w

Hence
aRl(3)
FO-1;0=L_E w(o.
LEMMA 2.2. Let h=t’$‘;£f_ - For t€[t, t;,4,

3! i
()] = A=ttt YAty DUty D =27
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PROOF. |w(#)| may has the maximum value at one of the distinct three
points ¥,, ¥, ¥z such that £, <y, <t;,,<9,<t;,,<9;<t; 3 Let |w(y)| be a ma-
ximum value of |w(?)|, then
|w(y1)|=[(y;'t,')(y1_ti+l) (yl—t;+2)(y1_t,'+3>i
(=1, 1)*
4

3! i

= |9~ %2l I~ sl 2=

Since Iyl—t‘.+2|<2h. |¥,—%;, 3l <3h and

Il

2 2
l(t_ bytd iy )_ =ty
2 4
— (t'-—tl'-Fl)z = hg >
o 4 4
When w(y,) or w(y,) is maximum value, we have the same results.

IGt=t)Ct—1;, Dl

THEOREM 2.1. Let f€C*[a, b], then
1O =IOl FPURY,  where h=t;,,~1,.
PROOF. By Lemma 2.1 and Lemma 2.2,
1@ =15l =21 F P Dw @l

a
=l 1 =g Pt

3. Error analysis on the cubic Hermite interpolating polynomial
DEFINITION 3.1. Given real function f(#) and two knots #,<{, +1 of the
partition = of [a, 8], a cubic polynomial k;(#) with the constraints:
k) =1, hy(t;, PD=f ;)
S QA)=F D, k3’ D= D, =0, 1, 2, 3eeoeenym,
is called the piecewise cubic Hermite interpolating polynomial to f(£).
It has been known that the 4,(#) such that
RO =FUDH,O+f Wy, DH; D+ AICO+F Uy, )6,

where
H,-(f)=(1-2 j_._t;H )( :_t:.H, )2' Hf+1(’)=(1_2 zt:ft. )(t.t#fr.)z'

i ‘14l i i i+
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and

2 t—t.
G(=(t~t fiv1 . G (=% ——r1V,
Y=l Ys G ®=C-t ()
exists and is unique [2].

LEMMA 3.1. Let f&C"la, bl. Then there exist £ in [, t, || such that

£O-y =L O -1,

PROOF. Let E(f)=(f(t)—hy())— (FE) —hs(D)) “’C? where It t;,, and

wlt)=(t—1)" - ; +1)' Since E(#) vanishes at ¢, ¢, , and #, E’(f) vanishes
at four distinct points ¢, <y, <y,<t; ; by Rol]es theorem. And also E”(¢)
vanishes at three points, E(S)(t) at two points and Ew(t) at least one point
§in [¢, ¢, ;] from the same reason. Since h;f")(t)zo. we get

EO® =@ - (SO -BD)y=0
Thus

(4)
I —ha(D =f—4§5—)wc2).
That is,
AN (3, 2 2
JiO) —h3(t) = ——47——0 = t,')"(“‘,q. 1) .
THEOREM 3.1. Let f€C"[a, 5], then

(4)
1@ - hy@lI=LLL B with b=t -

PROOF. Since |(#—¢)(t—1;

1 42 2 2_. pt
= h’ :(t_t,) (t—t|+1)lS.~T6—
Thus

7@ -hyl=-15"1 " N E e TR R R

uf(“’n 4

<AL L,
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4. The error analysis on the cubic B-spline

DEFINITION 4.1. Given real function f(#) and two knots ¢,<¢; , of the
partition = of [a, 3], a polynomial s,(#) of degree 3 which is twice continously
differentiable on [¢;, ¢, ;] with the constraints

s3(t)=f(t), s3(t; D=Ft; D,
53’ UD=F s 53’ D)=L

and
33”(:,'.) :f”(t,-)- 33”0,'1.1) :f”(:,'.'_l)s

is called the cubic spline interpolating f(#). Especially the cubic spline
n+l
s;(1)=3" a,B,(f), where B,(f)'s are basis functions defined by
k=-1
( (t_"k—z)a- if by St=t ),
: 2 2 3 .
B3’ =t,_ ) +30@—t,_ ) =30~t,_D° if t,_St=t,
e I 2 2 3 .
By =0, L 1P +30°(t, ,  — D +3h(t,, =D =3ty 1), if ,Stst,
3 .
@poo= 0 i 4SSl
0, clscwhere,
with k=—1,0,1---e 2, n+1 and k=t ,—

polating to f(#). The &.'s arc determined by the interpolating constraintes.
It has been known that the cubic B-spline exist and is unique [7].

t, is called the cubic B-spline inter-

LEMMA 4.1. If fEC'(a, b], then
sy (D= FOISoIF DU with h=t; 1,
It has proved by Birkhoff and de Boor [1].
LEMMA 4.2. If fEC'[a, b, then
g = s, (D=5l f PU* with h=t,,,~t,
PROOF. Let e(#)=f(1)—s5(¢), then the hy(f)—s;(t) becomes the piecewise cubic

Hermite interpolation of e(t) (3]. Hence, for ¢ in [f;, ¢;,,], wecan write from

the definition
hy(D) =s3(D=e(DH D +e(t; DH; (D) +e' DG
+e'(t;, )G, (D,
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Since e(t)=/(t) —s,(t) =0 and e(t,, ) =f(t;, D—s5(t;. D=0,
hy(8)—s3(B) = UG +€' (t;, DG, 1 (D).
Thus by Lemma 4.1
Ia3(8) = 3D =lle’ NGO +e' 2, DG, (D]
=lle’ GG+ lle’ ¢, PG, 1D
= o7l f CIRUGC®I+IG; ., D).

—g— respectivaly,

Since G;(H)] and ||G;, {(®)] is less than or equal to
Iyt = sy Ol 1 £ DL+ L)

Ly )y pd

Sogl /IR

THEOREM 4.1. Let fEC[a, b], then
17 =ssDI= 5ol F DU with h=t;,,~t,
PROOF. From Theorem 3.1 and Lemma 4.2,

I £ = s3I =l (£ = hy()) + Chy(®) = s5(D))]
SNFO—=hy@l+ () = 53D

1 (1), . 1 4y,
=ger I Pk +ggi £ Vit
=9 (4
=—ar | f Clli.

5. Conelusion

By virtue of Theorem 2.1, Thecorem 3.1 and Theorem 4.1, we can conclude
that the piecewise cubic Hermite %,(#) has the best accuracy to interpolate a
given real function f(#). However, it is desirable to use the cubic BE-spline
s3(t) for obtaining the smoothest curve fitting because 33(1’)6(22 [@, b] even

though L,(DEC[a, b], hy()EC'[a, b).
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