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1. Introduction

In 1961, G. Lumer ([8]) constructed on a vector space a type of inner product with
axiom system more general than that of Hilbert space with the aim of carrying over
Hilbert space type arguments to the theory of Banach spaces. There he has considered
sermi-inner-product space, say, vector space on which, instead of a bilinear form, there
is defined a form ([x,»] which is linear in one component only, strictly positive and
satisfies a Schwarz’s inequality.

Later, B, Nath ([9]) has given a straight forward generalization of a semi-inner-
product space, called generalized semi-inner-product space, by replaceing a Schwarz's
inequality by a Holder's inequality.

Let X be a complex vector space. A generalized semi-inner-product (in short g.s.i.
p.) on X is a complex function [x,y]) on X xX with the following properties:

O [xt+y,2]={x%,2]+[y,2]

@ [Ax, y1=2[x,y]

(3) [x, x>0 for x%0

1

1
@ [[x, v < T, 6] 2 [y, 97" 77, 1< p<lon

for all x,y,2 in X and for all complex A.

A vector space with a g.s.i.p. is called a generalized semi-inner-product space (in
short g.s.i.p. space). A g.s.i.p. space is a normed vector space with Hx[l:::[x,x];
([91). The topology on a g.s.i.p. space is the one induced by this norm and it will be
in this sense that we shall refer to “bounded linear operators”. It is also proved in [9]
that every normed linear space can be made into a g.s.i.p. space.
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A g.s.i.p. space is said to have the homogeneity property when the g.s.i,p. satisfies
6) [x,25]=21*"24(%, 5]

for all x,y in X and for all complex A.
A g.s.i.p. space with the homogeneity property is called a homogeneous g.s.i.p.

space.

In fact, every normed linear space can be represented as a homogeneous g.s.i.p.

space ([10D).

The principal purpose of this thesis is to study continuity and strict convexity on g.s.
i.p. spaces.

We first shall define the convexity, the weak differentiability and the strict convexity

on generalized semi-inner-product spaces.

2. Definitions and main results

Definition 2.1. A continuous g.s.i.p. space is a g.8.i.p. space X with the property:

6) For every x,¥% in S,
[¥,2+2Ay]—[», %] for all real 2—0,
where S={x&X:|lx||=1}.
Equivalently, we see that
Re[y,x+Ay]—Rely, x]
or
Im[y, x+Ay]—Im[y,«] as 10,
where Re 2z and Im z are the real part and the imaginary part of complex z.
Definition 2.2. For x,y in X,« is orthogonal to v if [y,2]=0.
A vector x in X is orthogonal to a subspace N if x is orthogonal to all vectors v in N.
For a normed vector space, R.C. James ([6]) studied the orthogonality relation

defined by:
% is orthogonal to » if [lx-+Ayl|=llxll for all complex 2,

Definition 2.3. ([7], p.349) A normed vector space is weakly differentiable if for all
%, in § and real 4,

lim Het A9l -l it

Definition 2.4, A g.s.i.p. space X is strictly convex if whenever |l%l|-+liyll=!lx+ |
where x, 50, then y=Ax for some real 2>0.
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Proposition 2.5. In a continuous g.s.i.p. space with homogeneity, ¥ is orthogonal to
y if and only if ||x+2y]|=>]lx]] for all complex A.
Proof, If x is orthogonal to y, then
e+ A1l llall#= 2= L+ Ay, 2]
=1 |lx{l*+ALy, 21|
={lxl{*.
Conversely, if |lx+2y]l—|l#{|=0 for all complex 2, then
Re[x, x-+Ay]+Redly, x+Ay]— | [x, 2+ Av]1 220,
which implies that
Re ALy, x+2y]1=0
for all complex A.
Therefore for all real 1,
Rely,x+4¥]>0 for 1220
<0 for A<0.
By the continuity condition, we have for real A,
Re[y,x+Ay]—Rely, 2]
Therefore Re[y,2]=0.
For imaginary A, say {i; where 2, real,
Re A[y,x+29]=2; Reliy,x+dy1>0
and again by continuity condition
Re[iy,x]=0, i.e., Im[y,x]=0.
Hence we obtain [y, x]=0.

Theorem 2.6. A g.s.i.p. space is a continuous g.s.i.p. space if and only if the norm
is weakly differentiable.

Proof. Let X be a g.s.i.p. space.
For x,y €8 and real i>0,

e+ Al =[xl _. 1Cx+2y, 2] —{lx]*
A Allafj*?
~ Re[x+ 1y, £]—|lad}*
Allxl|?=?
_ Re{[x, x]+ALy, 2]}~
- Allaffet
1€)) —. Rely,x]
TP

But also
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ety —=lixll - e+ AxllP— |5, x-+4y7 ]
A = Allx+Aylle

(i) -~ Rely, 2 +2y]
[lx+ Ag|jF
Inequality (1) and (ii) show that the continuity property (6) implies that the norm is
weakly differentiable.

Conversely refer to [57.

Proposition 2.7. Let X be a g.s.i.p. space. If [lxl|-+|iyll=1x+3]] on X, then

Proof. It is evident for either x=0 or y =0. We assume that ¥ and y are nonzero
elements in X. Then we have
Cx-ty, 5+ 1=+ oliP= (il + 1D Qle+ i)
and so
(el e+ 1P 7t —Relx, x4 y7) -+ (lpll Hayl1#—Rely, x4+ 37) =0.
Therefore we have
Lo, aokyT==lal] [fx -+l
and
Lo 24y 1= 1yl e+ a7
Finally we conclude this paper with useful characterizations of strict convexity on g.s. i.p.
space
Theorem 2.8. Let X be a g.s.i.p. space. Then the following statements are equiva-
lent:
(1) X is strictly convex
@ If Cx, y)=1lafl ll¥l}*™* where x, y2:0, then y=2x for some real 1:-0.
() If Ly-+2l==lyll and [z, ¥]=0, then 2=0.
Proof. (1)=:(2.
Let {x,y1=:1ixi] |Iyll*~*, where x,y50. Since
Haell fiplle™r -y l#= Lo, 31+ Loy 9]
el et - Tl
Hence {lx+yi|=[lxll+[y]].
So y==2Ax for some real >0 by (1).
(2=(3).
Let liy+2ll=|lyl| and [2,¥]=0. Then
Ly+z,yl=Ly, 3]z, ¥]
=|ly-+all [lylP7%
p— 8 8 J—
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By @), y=A(y+2) for some real A>>0. Since |ly+z||={yll, A=1.

Therefore z2==0.

=2,

Let [|Jx+ yl]=l=l|+{I3ll, where x, y+0.

By Proposition 2.7,

iyl

letting A== I z=Ax—y and w=x+y,

then

6.

y=24% for some real 1>>0 by (3.
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