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1. Introduction

This paper is primarily dealt with the study of orthogonality relations for Lie
groups based on Haar integral and representation theory for Lie groups, which are
considerable parts in Harmonic Analysis. Harmonic Analysis is the study of functions and
function spaces defined over a topological group. It has been remarkably developed, since
approximately 1970, together with extensive researches on-the Haar integral defined over
Lie groups ((1), (3), (4)), on the representations of Lie groups ((2J, (7], (8}, (13)),
and on the structure of a Lie group applying Haar integral and representation theory ((11J,
(123, (143, (16)).

Section 2 presents the general theory of Haar integral which is a radical background for
the contents of section 3 and 4. We also derive the Haar measure & on a Lie group G to
get a Hilbert space L*(G, #) that will be used throughout the paper.

In section 3 we develop the elementary representation theery and prove some results on
the unitary representations of Lie groups. It is particularly observed that if given a unitary
representation (z, (H,{ , »)) of a Lie group G, we can construct a new unitary represe-
ntation (#, (V, (, ))) by using a positive definite function ¢ : G-—C. Section 3 also
contains the descriptions of Peter-Weyl Theorem and various principal subjects on the
representations that will be needed in section 4.

In section 4 we deal with the orthogonal projections of (zr, L*(G)) to (m/* & n, V"
® V) in connection with the Haar integral, and we prove some results concerning the
orthogonality relations for compact Lie groups and the characters of finite dimensional

jrreducible unitary representations of compact Lie groups.
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2. Haar Integral

Let M be a connected differentiable (real) manifold with dimension #. For each me=M
we shall denote the tangent space of M at # by M,. The dual space of M, will be denoted
by M,*. We consider the exterior z-bundle A,*(M) of M. The “o-section” of A.*(M) is

me

0= | !M{OEEA..(M,.*)}.

Since 4.(M,*) is a vector space with dimension 1, each AM*)— {0} has at most two
components. Therefore, it follows that 4,*(M)—0 has at most two components. M is said
to be orientable if A¥(M)—0 has two components. If M is orientable, an orientation on
M is a choice of one of the two components of A, *(M)—0.

A non-connected manifold N is said to be orientable if each component of N is orien-
table, and an orientation is a choice of orientation of each component.

Proposition 2.1. For a differentiable manifold M of dimension » the following are
equivalent.

(i) M is orientable.

(ii) There is a subset &= {(V, ¢)} of the atlas of M such that

M= |} V and dec(%;)m on UNV,

V,d)=d
where (U; x4, ++, %,) and (V; ¥, -, ¥,) are in &.

(iii) There is a nowhere vanishing #-form on M,
(See (16) for a proof.)

A Lie group G is a differentiable manifold which is also endowed with a group structure
such that the map GXG—G defined by (g, 7) 1—0or™! ia C”. In sequel, we shall use
G as a Lie group of dimension # without any statements.

The left translation by an element ¢ of G is the map L,: G—G which is defined by
L,(r)=or for each v&G. Then L, is a diffeomorphism and orientation preserving. Under

our situation we have the commutative diagram

L4

A (G) A2G)
©
L
G — G
such that for each r<=G
0L, loe : Aa(Ge™) —— Aa(G*).
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Similarly, the right translation R, by an element ¢ of & canbe defined. Of course, R, is
also a diffeomorphism.
A differential form o on G is said to be left imvariant if dL,w=w. Alsoin general, a

nowhere vanishing left invariant form w is called a volume form.

Proposition 2.2. Every Lie group G of dimension » is orientable.

Proof. It is well known that every Lie group G has its Lie algebra & which is a #-
dimensional vector space. Let E;'.,(G) be the set of all left invariant 1-forms of G. Then
we see that #*z=EY.,(G) ((16)). Acoordingly, there is a basis {w,, -, w.} of E ! (G).
In this case, w;A@w;A - "Aw, i8 a nowhere vanishing »-form of G. Thus by Proposition

2.1, G is orientable. W

Let G be a n-dimensional Lie group. Then G is orientable as above, and 4,(G,*) (¢G)
is an 1-dimensional vector space. Choose a non-zero left invariant z-form w consistent
with the fixed orientation on G. We define, with respect to w, the infegral of compactly

supported continuous function f from G into € by setting

J({f:Lfa), @D

that is, for each point =G and its local coordinate system (U3 21, -+, %a)
J f=j F(x) dxy N\ Ndxa
v U

ZJZ" ...... J‘Z’f(x)dxl ...... dx,,
. 1

where U= {x=(x,, ---, %) |6;<%;<b;, =1, -, #}. This integral depends on the choice
of the non-zero left invariant n#-form w consistent with the orientation on G.

Since such forms are uniquely determined up to a positive constant multiple, so is the
integral. If G is a compact Lie group of dimension », then we can and always will fix the

choice of @ by requiring the normalization
J w=1. (2.2)
G

Since a volume form w is left imvariant (i. e. Yo=G, 8L,(w)=w),in the integral (2.1)

we have v
[sL.swy=[ (feLosL @ =] foLw=] foL..

That is, for each oG,
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[ =] roL. (2.3)
G G

In view of property (2.3) the integral (2.1) is called a leff imvariant integrai.

Proposition 2.3. In the integral (2.1) the following holds.

(i) For each 0e=G and a compactly supported continuous function f from G into C
[ ro=] (foR) 2(@) o,
G G

where 2 : G—-R* (R*={r&R|r>>0} is a multiplicative Lie group) is a Lie group hom-
omorphism.

(ii) Let 7 : G—G be defined by ¢ I-——¢"'. Then, with the situation (i), we have
= op
[orior=] rongts

Proof. (i) We first note that, for each ¢,7G, L,oR.=RwlL,.
Then we have

d(ReoL)w=8L,00Rw, and
S(ReoL)w=8(LooR)w=3RodL,w=3Ruw.

That is, dR.w is left invariant, and hence there exists a non-zero real number A(r) such

that

dRw=1()w.

Let (U; %y, ++, %) and V' »y, -, ¥.) be two local coordinate systems of 762G such that

W=ax N\ Ndx,, FRw=dyi A\ Nd Y.
Then we have
Wy ... 991
ax, X
Ay A-eees Adynss| e da Ao Adx
..................... E
s ...... 0% |
3x, ax,. ) R
and thus
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oy ... 9

o, 0%, |
..................... !
z(r)z ..................... !
39n Oy |

[ Ox, ox, )

Therefore 1 is a C”—function (Note that if dR:w and © have the same orientation A1)

>0, otherwise A(z)<<0). We put

)= A() ],
then A is also a €”-function. Since R,.=R.oR, for each ¢,76=G we have
Aor)w=38R,w=8(RR)w

=R ,00Raw=8R,A(t)w
= () A(r)w.

This means that
Aar)=2A(o)A(r).

Therefore A : G——R* is a Lie group homomorphism.

Now for a diffeomorphism

7: G

we have
fpmtfrew

with “+” if and only if 7 is orientation--preserving.
Therefore, in our context

[ fo=2] 3R,
G ]
=] (fRIX(Pw
=[ (FoRI AN,
(ii) We note that L,on=%°R u-,(aEG) implies that

§(Lyon)w=3(7°R -1 )o.
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And thus we have
577°5L,w=577w=:5R0.-1 o Jnew,

that is, 7w is a right invariant #-form. Since there is a relation w®=dw" between a left
invariant #-form «* and a right invariant »-form ®® ((15)), where 4 is a nowhere

vanishing €~ real function on G, we have
dnpw=dw.
Since for each oG

SR, (6nw) =dnw
=0R,(d(x0)w)

=) d(xd)w (Y2G),
we have
o) =d(x)(d(x0))"! for all x=G.

Noting that d(e)=1, we see that

d=-1_
(o).

Moreover, since % is a diffeomorphism,

waz ijaav(fw)
=] (fon) féng [ungy m

The function A: G-———R* in the proof above is called the modular function of G.

Proposition 2.4. For a compact Lie group G the integral (2. 1) is left and right invariant.

Proof. It has been shown that the integral (2.1) is left invariant.
By (2.2) above, for the function f: G——C such that f=1 we have

1= fo=[ (foR) (@) 0=20) [ fo

since foR,=f=]. Therefore A(¢)=1. As in the proof of Proposition 2.3, since
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[ fo=] RN @
G G
:J fQRrw:J‘ fORn
G G
the integral (2.1) is right invariant. W

A Lie group G for which A==1 is called unimodular,
Thus, every compact Lie group with finite dimension is unimodular.

For a Lie group G we put
Co@)={f : G—C|f is continuous and the support of f is compact}.

We note that for fe=Co(G) such that fz%0 and F.20
J'Gf >0 (2.4)

since there is a positive coordinate patch for G on which f is positive.

Therefore we obtain ((6) or (15))
jrfw::o if and only if f=0. (2.5)

Furthermore, we also get (£103)

IE

Definition 2.5. A measure 24 on a locally compact Hausdorff space X is a linear
function ¢ : Co(X)—>C such that if for each compact subset KX and for each fe=Cy(X)

with Suppf<ZK there exists a constant Ny such that
(<Nl fl,

where ||f|l.=suplf (x)1.
A measure # is said to be positive if f>0 then a(f)>=0.
A positive measure # is normal if for each fEC(X) with f >0 and Fz20, #(f)>0.

For a Lie group G we have already defined the left invariant integral _[Gfa) for fe=Co(G).

We define
#i C(@———C by w)=[ fo.

Then it is easy to prove that g is a positive and normal measure on G (by (2.4)and (2.6)).
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This measure x is called Haar measure and the integral (2.1) is called Haar integral.
For fi, iCe(G) we define

S =M AT)=[ fiTw

Then it is clear that (Co(G), {, ») is a pre-Hilbert space.
Let L*(G, #) be the completion of (Co(G), ¢, »). That is, L(G, ) is a Hilbert space
and (Co(G), {, N)=LXG, B).

Definition 2.6. A Hilbert space is said to be separable if it contains a countable dense

subset.

Proposition 2.7. For each compact Lie group G, L*(G, #) is separable, where ¢ is Haar
measure on G.

Proof. Since G is compact there is a set {(U,, @), »=-- y» (U @)} of local coordinate
systems such that Gm:Ul U.. Since G is a Lie group there exists a partition of unity {¢;

|j=1, -, n} such that
Supp$s Uiy 4420 and 3 dy(x)=1 (+6).

Suppose that feCo(G) is such that {f, ¢;»=0 for all j=1, 2, -+, n. Then {f, ¢;»=0
o= (Ref, ¢;>=0={m f, ¢;>, and therefore we may suppose that f is real. Now assume
that f(x,)%0 for some x;6=G. Then there is a connected open neighborhood U, of x, such
that F(x)+0 for all xe=l,.

Therefore f|Us>0 or f|Us<0. By possibly substituting —f for f we assume that f|U,
>0. Let ¢; be so that ¢;(%)>>0 and Suppd;CU,. Then ¢; fEC,(G) and by (2.4) and
(2.5)

#(dy f)=[c¢4 Jw>0.

This is a contradiction to our hypothesis. Therefore f=20.

We put
G=git -+
and
= ¢
=i
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Then {9} is an orthonormal basis of L*(G, #). Since there exists an orthonormal basis in
L¥G, p) if and only if L*(G, ) is separable ((15)), our proof is complete. WM
3. Unitary Representations

Let (H, {, )) be a complex Hilbert space. A representation of a Lie group G on H

is a homomorphism

z: G —s Aut(H)
such that the map

Gu’fH — H

(g,v) 1 — (gl

is continuous, where Aut(H) is the group consisting of all automorphisms of H. In this
case, (7, H) denotes the representation of G on H.

(x, H) is said to be unitary if for each ge=G, #(g) is a unitary operator. Since, if
n(g) is unitary then for v, we=H

(v, wy={n(g)v, m(g)w),

we have that
(z, H) is unitary === "ge=G, n(g)*z(g)=n(g)n(g)*=1,

where z(g)* is the adjoint operator of z(g) and I is the identity map of . We note that
2(g)*="z(g) if H is a finite dimensional complex vector space, where 7(g) is the conjugate
of n(g) and *z(g) is the transpose of z(g).

Let (n, H) be a representation of G on H. A subspace W of H is said to be invariant
if for each g&=G, n(g)(W)CW. (n, H) is said to be irreducible if the only closed invariant
subspaces of H are H and {0}.

For two representations (n, H) and (p, V) of G we put Homg(H, V)={4: H—V|
A is linear, continuous, and Az(x)=p(x)4 for all r=G}.

If there is an isomorphism in Homg(H, V) then (x, H) and (o, V) are said to be

equivalent.

Definition 3.1. Let {(n;, H,)} be a countable collection of representations of G. A
representation (z, H) of G is said to be a direct sum of the (a;, H:) if for each ¢ there

— 67 -
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is an injective element 4 in Homg(H;, H) such that
(i) the sum V:Z‘j A:i(H;) is direct

(ii) V is a dense subspace of H.

In this case we write H= 3 H; as a direct sum.

Definition 3.2. For two unitary representations (7, H) and (p, V) of G if there is an
isomorphism in Homgs(H, V) then they are said to be wnitarily equivalent. (zn, H) is a
unitary direct sum of (m:, H;) if

(i) H=XH;
(ii) for each i (m;, H;) is a unitary representation of &

(iii) when we identify H; with its image in H, H; are mutually orthogonal.
Let G be a Lie group. A continuous map ¢ : G-—C is positive definite if for any
subsets {c¢,, -, ¢,}C and {gy, -, .1 G

S eicip(gitg) =0

irj=]

Theorem 3.3. Let (x, (H, {, »)) be a unitary representation of G. _

(i) Define ¢ : G—C by ¢(g)=(x(g)v, v) for g==G and a fixed element v of H. Then
@ is positive definite.

(ii) For a positive definite function ¢ : G——C, let V be the vector space which is
linearly generated by the set {f: G——C|f is continuous and such that for all 25=a, f(g)

=@(gx) with a fixed element x in G}.

F@=5 eplexn), h@)=F di9(ey)

define

(f, h)::.z: cod; (it %)

i=1.4.n
FES TPRRLL

If ¢ satisfies that for any subsets {¢;, -, ¢,}C and {gy ', e Tan( &

33 0 Gipler g)=0T0 S 6T 08 08 =0,

then ( , ) is an inner product of V.
(b) Let (V, (, )) be the completion of (V, ( , ).
If we define #(g) f(x)=sf(xg) for %, g=G and fGEV, then (%, V) is a unitary represen-
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tation of G.
(¢) (f—fi, B)=0 for all A=V if and only if f:=f,, where f and f; are in V.
Proof. (i) For {¢, -, ¢, }C and {gy, -, £.)G,

2o cd; Plgs T g)=20 ¢ ciinlgs g, v

ii=1 iyd=1

= $l c.cilnlgi) n(g) v, )

iy

=22 aod@) e we))  (w(g)=ag)®)

= 2:1 Leimlgd) v, csng)vd

=y e(g)et (g, an(g)vt e, (g v
=>0.

Thus ¢ is positive definite.

(a) of (ii). Suppose that we have three elements f), f; and % in V such that

fl(g):":% ¢ p(gxy), fz(g)m’:ijdﬁ'f plgx;)

: (3.1)
h(g)= %.l: d,9(&Y4)

Since
mtn
Sig) +Lfolg)= 22 ciplgn.),
we have the following:

(fidfo, Y= 25 cidip(yta)
i=],* "m0 .
k=ly.asl

= 33 cdionix)+ 35 cidyo(yyt xy)

LS FERRN 1 ismel, s men
L33 YREREYS k=lyronyi

=S, W)+ (S, B).

Similarly, we can prove that (f, Ai-+&2)=(F, h)+(F, B2 o
Next, since ¢ is positive definite, for all pair {{¢i, ', .} ZC, (g1, .} "G} we
have

kel

022 ¢ € (gt gi)= C Ei (g gd)

iydi=1 iHi=1
» —

=32 ¢ cs 088

iyf=l
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=22 ¢ 0 gt ge)

fyd=1

and thus
o(g, V g0)=0(gi" &5).

Hence, it follows that p(g)=9¢(g™?)
Using notations in (3.1)

(hy f)= 25 dycip(a T y)

i

2;3;:-‘-- ¢ dap(oat %)
b-l:n-::

= (fl! h).

That is, we have that (f1, 2)=(&, /)
Finally, we have to prove that for fe&V

(f, /)20, and (f, f)=0 == f=0

For f(g)=§n’:‘: ¢ p(@x),

o D=22 6 8role™ ) 20.
Assume that f=0. Then
(s N)=322 002100 %)
=§_3'_'1 Ciles (a7 )+ Ca (257F %))

=32 0 f (™
=0.
Conversely, we assume that (f, f)=0. Recall that
F(@) =250 9(gx) and Flg)=2250(n ™)
for all g&G. Hence we have

F(@) T@ =236 519X 9(X0),
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where X;=gx;. Since X, Xi=x,"" x;,
fr H=32 0T 1) =37 ¢ 6 (Xi™ X)=0
Hence by our assumption we have
7@ - f(g)=0,

and thus f(g)=0 for all g=G.
(b) of (ii). Since for %, g&=G and fe=V, #(g)f(x)=/f(xg), we have

#(g1)(R(g)f ) (%) =#(g2) S (%81) =f(%g: §2) = (21 82)f (%)

for g, £:=G, and thus

#: G

- = Aut(V)

is a group homomorphism.

For f, =V and g=G we want to prove that

(fs BY=(&(8)S, #(g)h).

Assume that

f (g1)=;f..;.‘. ¢ (g1 %), h(gx)n%’.; d;9(g: 91)-
Then
FDN@I=TFae@gn), (HO(E)=334:19(8189)

Hence we have the following:

f, W= 22 e;d;p(357 " x)
ial,ere,m
P
= 30 cadie(irtg gx)
inl,cee,m
Julgeeey?

=(#(&)f, #(g)h)
Finally we have to prove that the map
GXV —V (&, ))—&)S)

13
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is continuous. In the commutative diagram

GXGXV GxV
! N . &

(x,g, ey (3,3E(g) )

@ g ? @

S @ "
% F(g) f(5)
it
(xg, f) ey ()
2 ) €
GxV -~ - o

the maps @), 2 and 3 are continuous. Therefore, the map (g,/)—#(g)/ is contin-
uous.

(¢) of (ii). If we use the notations in (3.1) we get

(fimfor Y= 30 cadsp(ita)— 22 cid (¥t %)
fal,nee,nm FET TS PRI S 2
FERTEEEFT) dmiyrangl

:%ﬁ‘j{clgo(y;lx,)-f--~---~»-;~~c.. 00357 %)}
- ,21_—1‘ A {Cmsr @5 ) ot o Ot 9957 K
SYSPAACHUES ST ICHD)
=23 AL A
Since y;(7=1, =+ §), di{(j=1, -, {) and / are arbitrary,

( fi—fay B)=0 for all eV if and only if fi=/fi. M

A representation (z, H) of a Lie group G is called a finite dimensional representation
if dimoH oo,

Lemma 3.4. Let (n, H) be a finite dimensional irreducible representation of a Lie
group . Then Homg(H, H)=CI.
Proof. Since dimcH<eo and C is an algebraically closed field, each As=Hom¢(H,H)

has an eigenvector v(#0)c=H with eigenvalue 1. Put

H,= [we=H | Aw=2w}.
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Since for each ge=G, n(g) satisfies n(g)A=An(g), we have
2(g)Aw=A(z(g)w) =A(n(g)w)

for each weH,, and hence zn(g)we=H, It follows that z(G)H H,. Thus by our

irreducibility we have
H,=H and A=2AI.
Therefore Homg(H, H)YcCI, and hence Homg(H, H)=CI. Mk

Let (z, H) be a finite dimensional representation of a Lie group G, and let H* be the
dual space of H.
For an orthonormal basis {vi, -, 2.} (dimcH=#n) of H, let {v/*, :, 0,*) be the dual

basis of {vi, -*-, .}. Then by setting
{o*, v*) =04

H* becomes a Hilbert space. We define for each ge=G, ve=H
(@*(ge*) () =v*(z(g) ') (i=1, -, A). (3.2)

Then(z*, H*) is also a finite dimensional representation of G.
It is easy to show that (=, H) is unitary and irreducible if and only if (z*, H™*) is unitary

and irreducible.
Definition 3.5. Let (25, H;) and (=, H;) be {finite dimensional repregentation of G.
We give
H:H1®H2 ((é)“@c)

the Hilbert space structure that makes the basis {v.@w; | 155i<Im, 15/7<n) orthonormal
if {vy, -, va) and {wy, -, w,} are othornomal basis of H, and Hy, respectively.

We define

z: G — Aut(H,®H,) by n(g)=m(g)@r.(g) for each g&G,

then (z, H) is a finite dimensional representation of G which is called the femsor product

representation of H, and H,, Here we note that
2(8) (vR@uw) =m(g)v@n(gw (§=G, veEH,, wEH,).

Also we define
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75‘®7h H GUTG
by (g.h)1]

Aut(H/&QH;)
— 1, (@YD 7a(h),

where (7,(2)®:(h)) (¢Q@w) =n,(g)v Qs (W)w for vecH,, wezH,.

Then (m®@m, Hi®H,) is a finite dimensional representation of GxXG which is called

the exterior temsor product representation of Hy and H,.

Lemma 3.8. Let (z, (H, {, ))) be a unitary, irreducible, and finite dimensional represe-
ntation of a Lie group G. Then any invariant Hermitian form on H is a real multiple
of (, ).

Proof. If % is an invariant Hermitian form on H then for v, weH, h(e, w)=h(z{g)v,

n(g)w) (g=G). There exists a Hermitian matrix ‘4 such that k(v, w)={dv, w;, and we
note that

{ {z(g)v, z2(g)w) = (a(g)Av, n{g)w)
{n(g)v, n(g)w) = (An(g)v, n(g)w)

implies that n(g)A=An(g), and hence Ac=Homg(H,H). Therefore, by our hypothesis

Therefore we have
o, w)=clp, w). I

In sequel, we shall deal with compact Lie groups and finite dimensional representations
if there is no any statements. Accordingly, by a representation (z, H) of Lie group G we
mean a finite dimensional representation of a compact Lie group without any statements.

Asin §2, for a Lie group G, L*G, ) is a Hilbert space with Haar measure (for
simplicity we shall put L*(G, #)=L¥G)).

For f&C(G) (since G is compact Co(G)=C(G)={f: G-—C | f is continuous}) and g=G,

we put
R )(F)=f(g7'%) (#G) (3.3)

Then (2, L*(G)) becomes a unitary representation of G (note that (z, L¥&)) is not finite
dimensional) ((15), (11], (1)). Furthermore, if we define

(z(g, WIX)=Sf(g* xh) (2&G) (3.4)

— T4 —
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then (z, L*(®)) is a unitary representation of GxG ((15)).
For a compact Lie group G, let G be the set of all equivalence classes of irreducible, finite

dimensional, and unitary representations of G. That is, for each r=@ let (=, V,) be a

fixed representative. In this case

4r: V,'QV, —C(G)

is defined by
A (AQv)(g)=A(z(g)v) (3.5)

for A=V ,*, =V, and ge=G. Then

Ares Homguo((2:*&7r, V"®V,), (z, LA(G)))
(see (3.4) and Definition 3.5).

We need the follwoing theorem in section 4

Theorem 3.7. (Peter-Weyl) Under the above notations, (z, LX(G))=XV,*®V, which
is a unitary direct sum over G of representations of GxG. In particular, G is countable,
(For proofs see (15] or (6)).

We must note in the Peter-Weyl Theorem that for each 76=G the Hilbert space structure
of V. *®V, is defined by

{(r*Qu, w*Qu) = (v, w){v*, w*) (3.6)

for v, we=V, and v*, w*<V,*. Of course, the Hilbert space structure of V.* is induced

from the structure of V, (see (3.2) above).

4. Orthogonal Projections

Let VA; and V; be finite dimensional (complex) vector space. We put

LV, Vod={f: V;—V,; | f is a linear transformation}.
We first prove the following.

Proposition 4.1. For finite dimensional vector spaces V', and V; we have the isomorphism
(as vector spaces)
7: V"QVa=L(V,, V),
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where @=&).
Proof. We consider the map

@' : V 1*®V2

s L(V'1, V)
defined by
UV(AQw)(v)=A(v)w

for AV ¥, v=V, and w=V,. It is clear that ¥ i a bilinear map. Let us define the
inverse @ of ¥ as follows.

We put

{vy, --*, v.}=an orthonormal bagis of V,
{wy, -, we}=2an orthonormal basis of V.
{v,*, -+, v,*} =the dual basis of {v, ---, v,}.

Take he=L(V,, V;) and its matrix

........................ (m X n-matrix)

Assume that

D(h) =v*QuweV *@V,, and

Y TN SIS 8, 0w =b Wy bt by W
Then we have

() =T (*Quw) (vy) =v*(v)w. 4.1
That is

C1y Wyt eevees + Cnt W= (bl Wy +bm wn)

TR % +Cut Wn=08y (b g+ oo + b )
C1z w!..{,. ...... "{"‘E-ﬂ Wa==dy (bi w1+ ...... +b‘ 1&’") 3
............................................................... ‘ (4.2)
Cin Wit ++eo+ + Con W= (by w1+ o +bn W) |
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By (4.2) we have the following:

cu=a by cy=ay by Cm =@y ba
Cu=ay by Cpp=agbyereeene Cuz==(y by
CinT=0yp bl Can= 0y bz """""" Can™=(ly bu

‘Therefore, by definition of tensor we have the follwoing equation;

Dh)y=v*QRQuw= 3, ¢;; 0;*QQuy

sl een,m
FESTEREYE

It also follows from (4.1) that @ is a linear map.

Furthermore,

PV=ly gy, 24 T0=11w, v,

are clear. WM

Recall that for each 76, (7;, V) is an irreducible, finite dimensional, and unitary
representation of G (compact Lie group) (see Theorem 3.7).
We difine

Xr: G s C

by
Xr(g)=tr.n,(g) (trace of 7:(g)).

In this case, ¥, is called the character of (ny, V).

We shall use only Haar integrals in this section.

Theorem 4.2. Under the above circumstances, let {oy, -+ , .} be an orthonormal basis
of V, and {oy*, - » U=*} be the dual basis of {vy, - , .} Then the following holds.

1) ‘ﬁj;lva*(ﬁr(g)vi)i"fnr(g)vz)»":n

for all g=G.
(ii) For v, we=V, and »*, w*<V . *

Giy [ %:(&) T(@) dg=1.
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(iv) In the isomorphism

r: Vr*®vr ""‘“’L(Vrs Ve
we have
T(x,)=1I.
Proof. (1). We put
all --------------- alﬂ }
nr(g) =
aul --------------- ann
Since n,(g) is unitary, 7. e.,
(&) *n,(g) =1,
we have
._2::1.." @is aiy =04
and thus
rf_;:i!a”]zzlau‘h{_ ...... +laa|E o + | Bual 2=,
Since

0. * (7 (2)v;) 0¥ (7 (@)0)) = a3,
our assertion is true.
(ii) Let

Pr: IXG) —V RV, (rek)

be the orthogonal projection (33,ex V *®V,=L%G), see Theorem 3.7).

Then the usual action 7 (see (3.4)) of GXG on L*(G) corresponds to the action z*®z,
(see Definition 3.5) of G XG on V,*®V,. In fact, for P f=v*@vsV, @V, snd x,9,
2&G

(z(%, )P1f) () =P f(x 12y) = (2*Qv) (¥ '2y)
=1*(2, (217! 2 (2) 7 (3)0)

by (8.4) and (3.5). On the other hand,

(2 ()%, () (v*@2)) (2)=(m,*(x) v*Qz,(y)v) (2)
=, M) o, (2) m () 2y =0"(2,(2) 12, (2) 7, (9)V)
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by (3.2) and (3.5).
Since z is unitary the action 2,*®z, on V,*®V, is also unitary. Moreover, since (z,,

Vr) is an irreducible, finite dimensional and unitary representation, so is 2 *®x,. We put
Wo*@o, w*@w)=[ *(x(8)0) W Pw)ds .

Then it is easy to prove that % is an invariant Hermitian form on V *&V:. Therefore, by

Lemma 3.6 there exists a real number ¢ such that
Wo*Qo, w*@w)=clv, w) {v*, w*)
(see (3.6)). By (i) and (2.2) we have
f o 5V (8)0)) v¥(2,(g)0;) dg=n.
On the other hand,
f o 5 vt (nr(@)v.) v ()0)) dg= T cCoyy 0. (o, 0¥y =on,
So we get #=c¢n?, and hence c=~i——.
(iii) By the conclusion of (ii)

[ oratern ¥ E@my dg=-L 6, - 84 4.9)
Since for 2r(g)=(aw), %(&)=3 au

_L 1(8) x:(g)dg= L();v;*(nr(g)v()) (Zo*((g)v))dg
Also using the result of (4.3) and the following fact

[ ooy oF e de=-L-.,

we have
[ w %y dg=32 [ vMale)w) 5 alDIny dg=1.
(iv) We first note that for z,(g)=(a;;)
1:(8) =23 au =32 vi*(xr (£)0) =2 (0° @00 (4).

Therefore, if we regard X, as an element of (V,*®V;) (Xr=L*G)) then we can denote
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Xr by
Xr= '2".; v*Qv;
Hence
COEE (6-nPALTHES SEACACEDR
Moreover, for every v,&V,

g U(w*Qu)(v)=v*(e)vi=v;

and hence we have
rigo=1. M
As in the Theorem 3.7 we have
LAGY=3ex VAV,  (a unitary direct sum)
For this expression, let
P, i LHG) —————V, @V,
be the orthogonal projection. Note that for fe=L*(G) if we put
P f=v@v*V @V
then for each g&=G

P f(g)=(v@v*) (g)=v*(z{g) *v).

Since, for r£p=0G, V&V * and VuRVW* are orthogonal, we have
| Py Ps@rig=0  (see (4.8))

by (ii) of Theorem 4.2. In fact, if we put

P f=0,Qu*&V, @V ,*
Ps ::w.ﬁ®w;¢*€£v»®vi:*

then

| P Pustad dg

= [ oG E™on) wit(ma(gwn) dg

= L Oran*(Trpnl@) Vrss) Wraw*(Tren(Q) Wrys) dg

- 80 -

(4' 4-)
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1
T ntm Wryns Wran) Drpp®, Wris™)

=0,

where dimcV,=n, dimJV,=m,
vren®= (0%, OEV VY
wrn*= (0, w*)EV OV ¥

. (g) .
1 ({(n-+m) X (n+m) —matrix).

and 7Cr+,,(g): (
0 7(g)

We have the following lemma by using the above notations.
Proposition 4.38. For every f=L*(G) and »=G

P )= (inVy) | T@) et x) d.
Proof. By (4.3) it suffices to prove that
Pf()=(dimVy) [ @) Pef(a™5) dg.
We put dimV,=#, then by (iv) of Theorem 4.2
% (8) = 22 v (mi(£)0),
where {vg, -+ »Us} is an orthonomal basis of V, and {#¥*,-- , U,%) is the dual basis of

Pf(x)=v*(z, (%) ' v;).

Then we have
Prf(ghe)= 22 v (ar(2) ™ 02) 24wy (£)2)

andjthus
@im V)| 6@ Puf(e™t %) dg
= I 0.4 (ry () o) (dimVy) [ T GEA@I80) et (er(@)v,) dg
-:.‘2,‘_; v (%) ) G 8; (by (i) of Theorem 4.2)
=Pf(x). B

Theorem 4.4. If f=L*(G) satisfies the following conditions
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Q) [, Fagrgdg=1() £(2) (5, y=G)

(i) Prf0

then
Prf=(dim V)™ x.

Proof. In our condition (i) we put x=e=y (e is the identity of G). Then we have
P f(e)=(P.f(e))?

by using (2.2), and hence P.f(¢)=1. Since ¥X,(e) =2 by (4.4), we have the following by
Proposition 4.3( note that z=dim V);

0=Pif(@) — —1:()
= T@ ) dg- | H@ 1 dg
= [, %@ (e~ 187 dg
Therefore, by (2.5) we get
Pof ()= -5 1(2)= (dim V)™ (%)

for all x in G, That is,

Pif=@mV)™ % W
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