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ON THE NUMERICAL BEHAVIORS OF CUBIC-QUARTIC
SPLINE FITS

HA-JINE KIME

1. Introduction

The theories and numerical methods for construction of a spline fits
to the data given as horizontal segments, rectangles of uncertainty, and
combinations of them with vertical segments, are not well known. The
author has studied in [lJ a numerical treatment to construct a spline fit
from experimental data which are erroneous in two dimensional cartesian
coordinate system. Using the general theory of spline functions for
fitting, the author has introduced a representation of error on the data
in abscissa and ordinate, and found a sufficiently regular function (J(t)
E H2[a, bJ (Sobolev space of order 2) such that

S
b n 1 1 Sb
a((J" (t) )2dt+ P"fl Ci2 (b
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-ai a:(J(t)dt-z;)2

rh n 1 1 fh i::2-t2b] [Ja (x" (t» 2dt+PjL;r2! (bi -ai a;x (t)dt - Zi) 2J

with a~al~bl<a2~b2<...<an~bn~b, Ci>O, p>O, and Zi=X(ti).
We have deliberated the second term of above expression (1. 1) which

l
b.

figures at the same time the error in abscissa represented by a:.x(t)dt/ (bi

-ai) where ai and bi are the error bounds of the measurement in abs­
cissa tjE[ai' biJ=[ti -7]i,ti+7JiJ with maximum deviation 7Ji around
the measured quantity t i and the error in ordinate represented by 1/Ci2

where Ci measures maximum deviation around the measured quantity Zi.
To solve the problem (1. 1) we have taken the Hilbert spaces X=H2
[a, bJ, qj.=HO[a, bJ and q=Rn, and defined the scalar products:

1 [h;
<kilx)x= bi-ai' a;x(t)dt, for all x, kiEX,
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and
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where

(1. 3)

n 1
<xIY)g=~ c} XiYi

with x= (Xl. ..., Xn), y= (Yl. ... , Yn), and transformed the problem (1.1)
into the simple equivalent form introducing the continuous linear operator
T of % into rq. defined by Tx(t)=x"(t) and the mapping A of %into
q defined by

A (x) = [<k1 Ix)", ... , <knlx),,]Eq.

Using the theorem of the characterization of the best approximation,
the author has shown that H n~2, there exists a unique solution Q(t)
to the problem (1. 1) where n is the number of the given data (see
[2J). Such a solution (J(t) is called a cubic-quartic (second order) spUne
function for fitting. For the convenience, we suppose that n~3. Using
also the projection method in Hilbeitspace, we have constructed a
theorem which characterizes the solution (J(t) to the problem (1.1) as
follow:

THOEREM. The function (J(t) E% is the cubic-quartic spline function
. for fitting .to tM problem (L1) (relatively to T, A,.z and p>0) if and

only if there exist f.lj(j=l, ... , n-2) such that
n-2 1 n-2

(1. 2) T«(J) =Q" (t) = ~f.ljP(t), A«(J) =z--~f.ljbi.
j=l P j=l

The coefficients f.lj can be obtained by solving the following linear algebraic
system of dimension n-2 .

n-2

~Wi,j f.lj=<zlbj)g, i=l, ..•, n-2,
j=l

W;,j==<Ji(t) IP(t»'IJ+ ~<billJ.i) g.

In this paper we study on the numerical technique to calculate (J(t)
practically. We solve first of all the linear algebraic system (1. 3) and
then determine numerically Q(t) from (1.2). With the numerical results
we also deliberate on the numerical behaviors of (J(t).

2. Numerical solution of the linear algebraic system

Since the matrix Q= (Wi,j) is symmetric and pentadiagonal, it is
necessary to calculate pet), p+1(t) and p+2(t) ;b,J, b,J+l and b,J+2. To
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calculate

(2.1) <fi(t) lfi(t»'/J=S:fi (t)fi (t)dt,

it is necessary to examinate precisely the n-2 continuous functions fi (t)
(i=l, ..., n-2) on [a, b] which are defined by the Lemma 2 in D].

In the case j=i, we have

(fi (t) I ji (t»'/J = S:: (fi (t) )2dt+S::+1 (ji (t) )2dt+S:::: (ji (t) )2dt

+ S:::: (ji (t) )2dt+I:::: (fi (t) )2dt.

If ai*b;{i. e., 1)i*O),

S:: (fi (t» 2dt= S:: {%L1ki[ (bi-t) +2_ (ai -t) +2J} 2dt

where

A . 1
i.Jk'=· .2dk' (bi -ai)

If ai=bi(i. e., 1)i=O), obviously

f
b.
a:. (fi (t» 2dt=0.

In the case j *i, we have

(ji (t) IJi (t»'/J = S:t (t)fi (t)dt+ S::+lji (t)fi (t)dt+ f::::fi (t)fi (t)dt

+fai+2fi (t)ji (t)dt+f
b
i+2fi (t)ji (t)dt.

bi+1 ai+2

REMARK 1. Actually if ai;:::; bi Ci. e.. 1)i is very small), the coefficients

of ji (t) and fi (t) are very small. Thus, to calculate S:: (fi (t) ) 2dt or

J
b.
a't(t)fi(t)dt numerically, it is preferable to develop at first (fi(t»2

or ji (t)fi (t) to the power form of degree 4 and then to calculate the
integrals of each monomials defined in [ai, bi].

To calculate

(2.2) (bi Ibi ) q= ±~bkibki,
k=1 Ck

we get easily bki , bki +1 and bi+2 from the definition of b/ (confer
(4.6) of [lJ). Thus we have
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(b; Ib;)q= E;2 \ bibi
k=i c;

= (::;f+(::::;f+(;/:~Y'
(b;Ib;+1)~ c;+1

2
C;+22

~ . .+1+ . d ·+1'di+l% . di+l% di+2%· i+2%

C;+22
(hi Ibi+2)q

di+2i . di+2i+2

From the results of the calculation (2. 1) and (2. 2), we obtain the
principal diagonal entries p;=W;,;, the first diagonal entries /;=W;,i+1
=Wi+l,; and the second diagonal entries Si=W;,i+2=Wi+U.

We probe the matrix r= (ri) such that
i+2 1

7;=(z Ib;)q=I:-2z"bi.
k=i c"

From the n data (the rectangles of uncertainty, the vertical and horiz­
ontal segments, and the points), we estimate the vector Z=[ZI' .•• , znJ
Eq such that

Z;

where Z;=Ci+1Ji=d;-1J;.
From the definition of b/, we know

Consequently,

7;=(zlbi)q=~z;b/+~Z;+lbi+1;+~z;+2bi+i
ei ei+l 12;+2

= Zi. + Zi+l.+ Zi+2.=0;2(z),
d/ di+1' di+l

where ol(z) designate the operator of divided difference of Z on tt, ti+l
and ti+2.

We solve the linear algebraic system (1. 3). Since the n-2 dimensional
square matrix D is a Gram matrix in q;Xq which is symmetric and
positive definite, the existence of the unique solution to the system
Cl.3) is quaranteed, and the system (1. 3) is solved by the Gauss method
or Choleski method. We should :find an algorithm to get the solution
vector f1. of the system Cl. 3). We have already supposed that n~ 3.
When n=3, we can get directly. When n=4 or 5, we prefer to calculate
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(3.1)

f1. by the Gauss method because the matrix {J is of order 2 or 3. When
n~6, we use the Choleski method consulting particularly 2. of [5J.

REMARK 2. With the Choleski method (i. e., n~ 6), for the sake of
computer memory, the matrix Q of dimension (n - 2) X (n - 2) is stored
as the form of a matrix of dimension (n-2) X3 such that (see [3J and

~.; [4J):

Pi fi Si

f>n-4 fn-4 Sn-4

Pn-4 fn-3 0
Pn-2 0 0

3. Numerical determination of cubic-quartic spline fits

To determinethe solution aCt) of the problem (1. 1), we estimate at
first the conditions A(a). From (1. 2) and the definition of the
operator A, we have

1 .-2

A (a) =z--'£f1..'biP j=! J

=[<k1Io)x, ... , <knla)xJEq.

From the Lemma 2 in [lJ and (1. 2) we obtain also

with

where
j+2

d/= n(ti-tz), j=l, "', n-2.
l=j
i*l

Thus, we have
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n-2 i+2IJ
(J(t) = i~/.lji~ Fj (a;, b;, t)dt+At+B

where Aand B are the real constants.
If we let

(3.2)

then

i+

2IJq;!(t) =fij~ Fj(a;, b;, t)dt, j=1, ... , n-2,

(3.4)

n-2
(3.3) (J(t)=L;q;!(t)+At+B.

i=l

To calculate A and B together, we take two conditions from (3. 1),
that is, the first condition <k11(J (t»x and the last condition <kn I(J (t»x.
On the other hand,

1 Jb.<k; I(J2;-1 (t) >x=b. _ . •(J2;-1 (t)dt, i=1, ... , n,
• a. ai

where (J2;-1 (t) designate the spline fit in [a;, b;]. Thus the two equations
are obtained to calculate A and B as follow:

J 1 Jb1<kl!(Jl(t»X b (Jl(t)dt,
l- a l al

1<k" I(J2,,-1 (t»x b ~ Jb
n
(J2,,-1 (t) dt.

n an an _

In each interval [a;, b;] or [b;, a;+1] we calculate the n-2 functions
q;! (t) of (3.2) with fij and determine finally the unique solution (J(t)
of the problem (1. 1) which is cubic-quartic spline function given by
(3.3).

REMARK 3. \iVhen al=b1 or a"=b,,, the system (3.4) has no meaning.

If a"=b,, (i. e. 1J,,=O), by the continuity of the (J(t), we get an equation

(J2,,-2 (t) = <k" I(J2,,-1 (t»x.

Consequently, (3.4) becomes

!<k1 I(Jl(t»X= b 1 fb1(Jl(t)dt,
l- a l al

<k" I(J2,,-1 (t) >X=(J2,,-2 (t).

If al=b1 (i. e. 1Jl =0), similarly, (3.4) is transformed

!<kl! (Jl (t»x =(J2 (t),

1 fbn
<k" I(J2,,-1 (t) >x b _ (J2,,-1 (t)dt.

n an an
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REMARK 4. In order to solve the linear algebraic system (3. 4), we

use the Gauss method. when bI = -ah the element of first row and
first column of this system is zero. We should then take the pivoting
strategy.

4. Numerical behaviors of cubic-quartic spline fits

Having a kind of numerical experiences, we remark the following
influences by the change of data and coefficients Pi>O of the cubic­
quartic spline fits. Some of these remarks are explained theoretically and
even numerically.

At first we consider the case of ei=O.
From (1. 2) and the definition of bJ, ei=O implicates:

(4 ) I) bJ=O for all i=l, ... , n-2, and (kilo)=Zi;
. 1 n) the coefficients Pi have no influence on the spline fits at

ti, that is, all curves of each coefficients Pi pass always the same points.
Moreover, if 1];=0, (4.1) implicates:

-the value of the spline fit at t; is Zi.
Therefore the curve pass throughthe points (ti' Zi).
If 1]i:3;: 0, (4. 1) implicates:

-the value of the local integral in [ai, bi ] equals Zi.
This permits not always that the curve pass through the points (ti' Zi),
but often signify that the curve pass through the neighborhood of the
points (ti' Zi)'

On the other hand, with the case of ei '* 0, we get the empirical results
such that:

I) the ei have much more influential than 1}i.

n) the curve concerned with the greatest coefficients Pi pass through
the nearest point from the point (ti , Zi).

Therefore the problem (1. 1) is nicely solved, at least, for a number
of constraints which are not very important. Theoretically it is not too
difficult to determine the solution (J(t). However, it will be desireable
to make our method be better to the following directions:

I) The generalization to several variables.
n) The choice of the proper coefficients Pi>O to get optimal result.
IiI) The generalization to the larger order of spline fits.

These seem to be quite possible and are intended to reslove soon or late.
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Those who desires to have the computer-programs and the plotting
rest¥ts please contact the author.
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