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GENERIC SUBMANIFOLDS WITH NORMAL STRUCTURE
OF AN ODD-DIMENSIONAL SPHERE (] )

FuryonNG Pak, U-Hang Ki, Jin Suk Pak anp Young Ho Kim*

1. Introduction

Many authors studied the so—called generic submanifolds of a Rieman-
nian manifolds and gave many valuable suggestions as the results ([2],
[3],05],[8]). And recently, the present authors studied generic
submanifolds of an odd-dimensional sphere under the condition that the
induced structure on the submanifold is normal and partially integrable.

The purpose of the present paper is to characterize Einstein generic
submanifolds of an odd-dimensional sphere tangent to the Sasakian
structure vector field and compact generic submanifolds.

In characterizing the generic submanifolds, we will make use of the
following theorems:

THEOREM A ([6]1). Let M be an n~dimensional complete generic subma-
nifold with flat normal connection of an odd-dimensional wunit sphere
S2m+1(1) and let the Sasakian structure vector defined on S°™*1 (1) be
tangent to M. I1f the structure induced on M is normal and if the mean
curvature vector of M is parallel in the normal bundle, then M is a
pythagorean product of the form

SP1(ry) X X SN (ry)
where p1, ..., pn are odd numbers=1,r 24+ +ry?=1, N=2m-+2—n.

THEOREM B ({6]). Let M be an n-dimensional complete minimal generic
submanifold with flat normal connection of an odd-dimensional unit sphere
S2m*1 (1) and let the Sasakian structure vector defined on Sl (1) be
tangent to M. If the structure induced on M is normal, then M is a
great sphere of S (1) or a pythagorean product of the form
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821 (ry) X+ X Stu(ry),

P s N 2L, prF oot py=n, 1< NZ2m—n-+2 with essential codimension
N—1, where r,= v/p,/n (t=1, ..., N).
Manifolds, submanifolds, geometric objects and mappings discussed

in this paper are assumed to be differentiable and of C*. We use
throughout this paper the systems of indices as follows:

k’j’ i, h:l’ 2y ceey 2m—+1; a, b’ cy d: €:1, 2! ceen 1y
z, ¥, 2, 4, v, w=1%,2% ..., p%, ntp=2m+1.

The summation convention will be used with respect to those systems
of indices. ’

2. Generic submanifolds of a Sasakian manifold

Let # be a (2m-+1)—dimensional Sasakian manifold covered by a
system of coordinate neighborhoods {U ; 2% and (F;* g;;, F;) the set
of structure tensors of M. Then we have '

2.1 FpFh= ——5;"+F,-F", F,Ft=0, F}F=(, F,Fr=]1
nd ‘ ‘ L ‘
(2.2) FiFig=gii—FF;

F* being the vector field associated with F;, that is, Fkt=F,gi* gt
being contravariant metric tensor of M. We also have ‘

(2- 3) VJ'F{::Fji
~and
@49 ViFt=—g;;F*+3*F,,

where [7; denotes the operator of covariant differentiation with respect
to the Christoffel symbols formed with g;;.

Let M be an n—dimensional Riemannian manifold covered by a system
of coordinate neighborhoods {V : y% and isometrically immersed in M
by the immersion i : M—M. We identify i(M) with M and represent
the immersion by zP=z"(y%).

If we put Byt=0,2"(9,=0/6y%), then Bj* are n linearly independent
vectors of M tangent to M. Denoting by g, the Riemannian metric
tensor of M, we have g,;=g;:B/By since the immersion is isometric,
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If we denote by C,* 2m—+1—» mutually orthogonal unit normals to M,
then we have g;;B/C,=0 and the metric tensor of the normal bundle
of M is given by g.,=g,,C.’C,f=0.,,0,, being the Kronecker delta.
Therefore, denoting by [, the operator of van der Waerden—Bortolotti

covariant differentiation with respect to the Christoffel symbols {cab}
formed with g,, we have equations of Causs and Weingarten for M
(2. 5) VcBbh:”hcbexha
(2 6) VchhZ —hcaJBah

respectively, where k% are the second fundamental tensors with respect
to the normals C,* and A%, =hg%g,., (g% =1 (gs,) L

Denoting by Kj;*, Kgs.® and K,.,* the curvature tensors of Gauss,
Codazzi and Ricci respectively

2.7 K44°= K3 *Bs*B/ By’ B+ hy® h 47 — b2 hay”,
(2 8) 0=Kkjithchijith— (thcbx_—Vchde)’
(2 9 Kdtyz == K}{J';thchjCinIb -+ hdezhpey — hcezhdey,

where we have put B%=B,igbg;, C%=C,ig¥g;; and (g7%) = (g,,) L
An n-dimensional submanifold M is called a generic (an anti-holom-
orphic) submanifolds of the Sasakian manifold A7 if M satisfies

Np(M) | F(Np(M))

at each point PEM, where Np(M) denotes the normal space at P.

From now on, we consider generic submanifolds immersed in a (2m
+1)-dimensional Sasakian manifold M. Then we can put in each
coordinate neighborhood

(2.10) By =f*B .} — f°C 1,
(2.11) FHCi=f,"B.*,
where f,2 is a tensor field of type (1,1) defined on M, f.* a local 1-

form for each fixed index z and f,*=f g%g,,. Also, we can put the
Sasakian structure vector F* of the form

(2. 12) Fh :faBah +f1CIh’
f@ and f= being vector fields defined on M and the normal bundle of M

respectively.
Transvecting (2. 10) and (2. 11) with F,* respectively and using(2. 1),
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(2.10), (2.11) and (2.12), we find

(2. 13) fbefea= —6ba +fbfa +sz xay
(2. 14) fze.feyzaxy —fzfys
(2. 15) fbe &= —fbfxs fzefea—__fzfaa

where £, and f, are 1-forms associated with f¢ and f= respectively, that

iS, fc_—‘_fagac and f::':fygyz-
Also, transvecting (2.12) with Fi* and using (2.1), (2.10) and (2.
11), we get

(2. 16) fafetfiafe=0,
(2.17) fEfe=0.
From (2.12), we have

(2- 18) fafa+fzfz=1

with the help of F,Fr=1.
If we put fo3=1"8sas fea=S8 yx and f. ze=F. 28 ecas then we can eaSily
verify that
fcb= —fbw fzc =fcz-

If we apply the operator [, of covariant differentiation to (2. 10) and
take account of (2.4), (2.5) and (2.6), then we have

(—g5:F*+8,#F;) BBy + hosf Bt
= (chba) Bah_}_hcaxfbaczh - (chbx) Czh+hcaxszBah:

which implies

(2- 19) chba= —&ch fa+5cafb+hcbzfza_hcaxszs
(2.20) Vefi®=8u S+ h"f.

By the same way we can also obtain from (2.11),

(2- 2]-) chza'—:acafz-hcexfea’

2.22) ke fo=h. f.°.

Differentiating (2.12) covariantly and using (1.3), we find
F.ichj:: (chﬂ) Baj_!—hcaxfacxh_l_ (chx) C.zh_kca:cBah,
from which, taking account of (2.10), -

(2.23) vefe=fol+ho. f*
(2- 24') ’ chzz —'fz:x'_hcez ‘,
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The mean curvature vector of M given by H*=1/2h*C* which is
globally defined on M is said to be parallel in the normal bundle if
F.h*=0, where h*=gh =

The induced structure (f£.%, gu .5 fof%) satisfying (2.13)~(2.18)
is said to be normal if

hczx fea —fceheaz =0
or, equivalently
(2.25) hee™f o+ by f £ =0.

Suppose that the ambient manifold is an odd-dimensional unit sphere
S§27*+1(1). Then, equations of Gauss, Codazzi and Ricci are respectively
given by

(2.26) Ka* =048 —0.°8ap T hazhes™ — b2 hay™,
(2. 27) thcbx—VchdeZO’
(2.28) Kicy®=hg,hty— heo*haty,

since the ambient manifold S$2m*1(1) is a space of constant curvature 1.

3. Generie submanifolds of an odd-dimensional sphere whose
Sasakian structure vector is tangent to the submanifolds

In this section, we consider that M is an n~dimensional generic sub-
manifold of $?7*1 (1) with the Sasakian structure vector F* given by
(2.12) tangent to M, that is, f*=0. Then (2.13)~(2.24) reduce to

(3. 1) fcefea: _5ca+f(‘ fa+fcyfyaa
(3. 2) fce:fex_—z(),

(3.3) f&fe=0,

(3. 4) f‘afezo

(3.5) fof2=02,

(3.6) fefe=1,

(3.7 Vefo*=—8u S0 f s by 25— b £
(3 8) Vrfbxzhcesze’ Vrfxa: —hcexfea!
(3 9) hcexfeyzhceyfxes

(3. 10) Vrfa:fca

(3.11) fEAheAfe=0.

From (3.1) and (8.2), we can esasily find that M admits the so-called
f-structure satisfying f3-+f=0,
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The present authors proved

LEMMA 3.1 ([3]). Let M be an n—dimensional generic submanifold
of an odd-dimensional unit sphere S*™*1 (1) witk flat normal connection.
If the structure induced on M such that the Sasakian structure vector of
S2mt1(1)be tangent to M is normal, then we have

(3- 12) hcezhbey=P yzzhcbz_l_ayxgcbs

(3.13) v h*=p P=,
where we have put

(3. 14) Pyzzzhcbxfycfzb’

(3.15) Pr=g»P,.7.

Proof. Transvecting (2.25) with f,° and using (3.2), we find
hefyf5°=0,
from which, transvecting £, and making use of (3.1),
(3.16) hee'f y*= Py ™f o — 057
with the help of (3.5), (3.11) and (3.14).

Putting ‘P,,,=P,,”gy,, it is easily verified that P, is symmetric for
all indices because of (3.9) and (3.14).

If we transvect (3. 16) with %;°, and make use of (3.11) and (3. 16),
then we obtain

'hbczhcezf ye=P ysz szf A —P yzxf b+5yzf bz

from which, taking account of the fact that the normal connection of
M is flat and using (8.11) and (3. 16),

P ysz wvxf »° T8 yz f[y*=P ysz oS bv+5yzf b2y

or, transvecting f,® and taking account of (3.5).

(3. 17) Pyszwuz_{—gyzuz:waxquw+5J’Igﬂz
because of P,,, is symmetric for all indices. Thus, it follows that
(3. 18) Pzszywx=Pxszx+ (P_l)gzy-

Differentiating (3. 16) covariantly along M and substituting (3. 8) and
(3.10), we gat

(thcex) fye+}lcezhdayfea= (VdPsz> fdé_,"Pyzzhdezfce”“ayzfdm
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from which, taking the skew-symmetric part with respect to d and ¢
and using (2.27),

(3- 19) '_thwheay &= (V dP yzz)f cz__ (V cP yzx)f & —2P ythcezf dc_zayzf de

with the help of (2.25) and(2.28) with K,.,*=0. Transvecting(3. 19)
with f,? and using (3.2) and (3.5), we get

(3.20) VP y®= (o'W Py")f 5
which and P, *=P,,* imply
(7 P y®) f5*= ([ PV ™.
Therefore (3.19) becomes
h*heay fa*=Pyhelf i+ 0 ac.
If we apply f3? to this and use (3.1), we obtain
—hhseyt Py P U 5° Ff f by
= — Py, %hs*+ Py ®P o, 57 . — 0478 47+ 0°f *f bz

with the help of (3.11), or, take account of (3.17), we can find
(3.12).

In the next place, differentiation (2.25) covariantly and substitution
(3.7) yield

(thcex)fbe'l_hcex(—'gdb f‘+adefb+hdbyfye——hd’yfby) + (thbez)fce
+hbez(_gdcf‘+5d‘fc+hdcyfye—bdeyfcy) =0,
from which, taking account of (3.11), (3.12) and (3.16),
(V dhcez)f P+ (V dhbez)f ce=0r
or, taking the skew-symmetric part with respect to the indices 4 and
¢, and using (2.27),
(V dhbez)f P (V chbcz)f 2=0. )
The last equations give (Fk..%)fy*=0 by means of (2.27). Trans-
vection f,? yields
Vahes*= (thux)fye 2+ (thcez)fffa
with the help of (3.1), which implies

(3.21) Vah*=(F iho®) f yf 9+ (7 ahes®) fofe.
But, we see from (3.3) and (3.11) that &, *f‘fe=0. Differentiating
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this covariantly and making use of (3.4) and (3.10), we get (Fzh.”)
fefe=0. Consequently (3.21) becomes

(3.22) Vah®= (7 aho") .

On the other hand, we have from (3.14)

Pe=h,*f #fer,
If we differentiate this covariantly and take account of (3. 8), we find
VaP== (V the™) fy*f <+ 2k haay £,
which means
VaPZ= (F gk *) f°f

with the help of (3.5) and (3.11). Thus, this together with (3.22)
gives (3.13). Thus, Lemma 3.1 is completely proved.

LEMMA 3.2. Under the same assumptions as those stated in Lemma
3.1, we have

(3.23) (7 .P2) {(h¥—P®) Py *+2(n—m—1) 6,7 =0.
Proof. Contraction (3.20) with respect to the indices ¥y and z gives
(3.24)  PPe=(F TP |
Transvecting this with f,¢ and making use of (3.2), we find
(3.25) | FaV o Py=0.
Also, transvection (8.24) with f¢ yields
(3.26) FeV Pu=0

becase of (3.3),
Differentiating (3.24) covariantly and substituting (3.8), we get
VchPw= (fweVbVePz)fcz_l_ (fweVePz)hbazfca

because of (3.25), from which, taking the skew-symmetric part with
respect to the induces & and ¢ and making use of (2.25),

(3 27) (fweVbVePz)fcz_ ( fwchVePz)sz+2(fweVePz) hbazfca':o

because the normal connection of M is flat,
Transvection f,° implies
(3.28) Fw Vol Py=(fufyV VP
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with the help of (3.5). From which, taking the skew-symmetric part
with respect to w and y and taking account of the fact that the normal
connection is flat

(3.29) S VW Py=Ff V3l Pry.

If we substitute (3.29) into (3.27), then we obtain
(fu VP2 he"f 2 =0,

from which, transvecting f4* and using (3.1),

(3. 30) (FaP:) hyf =0

because of (3.25) and (3.26). If we transvect (3.30) with f,° and
use (3.1), then we have

(3.31) (FaP2) (hye™ — Py fsf @+ s f o+ f o F55) =0
with the help of (3.11) and (3.16). Transvection A%, gives
(PaPy) (Py™h* — Py " P+ (n—2)0,%) =0
because of (3.5), (8.11) and (38.12). The last relationship becomes
(3.32) (FaPy) {Pou™® — PP +2(n—m—1)0,% =0

with the help of (3.18) and the fact that p=2m-+1—n. This means the
proof of our lemma.

4. Einstein generic submanifolds of an odd-dimensional sphere

In this section, we study the so-called Einstein generic submanifold
M of an odd-dimensional sphere admitting the Ricci tensor K, ; of the

form K¢b=~§—gd,, where K is the scalar curvature of M. In particular,
M is said to be proper Einstein if K 0.
We have from (2.26)

(4 1) ch= (n_“l)gcb+hxhcb1_hca1hba17
which implies
(4.2) K=n(n—1) +hh*—h"h,.

If the Sasakian structure vector F* defined on S27*1 (1) is tangent to
M, then we can write (4.1) and (4. 2) respectively as follows:

(4 3) chzz(n_m_l)gcb+(hz~P1>hchs



156 Eulyong Pak, U-Hang Ki, Jin Suk Pak and Young Ho Kim

4.4) K=2n(n—m—1)+ (h*—P*)k,
because of (3.12). Since M is of Einstein, we get from (4. 3)

K
(4. 5) Z(n_m—l)gcb+(kx_Px)hcbz=7gcb-

Transvection f,°f,? produces

X
(4'- 6) (hx—Px)Pyz_z_i_z(n——m_l)gyzz—;gyz

because of (3.5). Therefore, if M is a proper Einstein space, we have
from (3.23) that p,P,=0 and hence [ k,=0 because of (3.13), that
is, the mean curvature vector is parallel in the normal bundle. Thus,
we have by means of Theorem A in the section 1.

THEOREM 4.1. Let M be an n-dimensional complete proper Einstein
generic submanifold with flat normal connection of an odd-dimensional
unit sphere S (1) and let the Sasakian structure vector defined on
S2m+l (1) be tangent to M. If the induced structure on M is normal,
then M is a pythagorean product of the form

S21(r;) X o= X Stx(ry),
where Py, ..., py are odd numbers=1,r2+--+ry*=1, N=2m-+2—n.

THEOREM 4.2. Let M be an n—dimensional complete locally irreducible
generic submanifold with flat normal connection of an odd-dimensional
sphere S2"*1(1) and let the Sasakian structure vector defined on S?m+1(1)
be tangent to M. If the induced structure on M is normal and the square

of the length of the Ricci tensor is constant, them we have the same
conclusion as that of Theorem 4. 1.

Proof. Transvecting (3.31) with g% and using (3.3), we get
(74P,) (h*—P=) =0,
or, using (3.13),
(7 4hz) (h=— P=) =0.

This fact together with (3.13) implies the scalar curvature K given
by (4.4) is a constant.

From the Ricci identity and the fact that the normal connection is
flat:

Val hs,*—V W 2h3a®=—Kaophis— Kyothye®,
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we have by contracting with respect to 4 and &
‘7dl7d}"cax-"V::Vahw=I<ceha”:'_I<a'caehde'z

with the help of (2.27). Substituting (2. 26) and (4. 3) into the right
hand side of this equation and taking account of (3.12), we obtain

(4 7) VddemI_—VcVa]ﬂ-_—O.

We now apply the operator 9y, to (4.3) and make use of (3.13)
and (4.7). Then we have

V7 iK 5= (h*— P07 th
which becomes
Vv K p=r4raK
because of (4.4). On the other hand, K being constant, we find
(4.8) ey K =0.
Therefore, the identity:

(4.9) FAKGKD) = (77 aK o) K+ |7 aK

gives P K,;=0 because of the fact that K, ;K is a constant, where 4

is the Laplacian given by 4=g<p ;. Hence the Ricci tensor K,; has
the form

K
ch=7gcb (K¢O)

since M is locally irreducible, which indicates M is proper Einstein.
Thus, Theorem 4.1 gives our assertion.

Replacing the condition the square of the length of the Ricci tensor
being constant in Theorem 4.2 by the compactness of M, we see from
(4.8) and (4.9) that the Ricci tensor is parallel. Thus we have

COROLLARY 4. 3. Let M be an n~dimensional compact orientable locally
irreducible generic submanifold with flat normal comnection of an odd-
dimensional sphere S**1(1) tangent to the Sasakian structure vector. If
the structure induced on M is normal, then M is the same type as that

of Theorem 4. 1.

5. Compact generic submanifolds of S27+1 (1)

First of all, we prove
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~ LEMMA 5.1. Let M be a compact orientable n—dimensional generic
submanifold of S?»*1 (1). Then we have

.1 [, bt thaf Aptnp—lha— Va2 fogal?
FW  folP AR cer f5f 2+ Kaoy™f 91 1 ¥1=0,
where *' denotes the volume element of M.
. Proo f. From the Ricci identity for f;*:
ValV  fs*— VeV afs*= —Kacs* fo*+ Kacy fss
we have
Vo fo*=nF  fo-+ K o fo5+ Ko, of
with the help of (2.20), or substitute (4.1),
(5.2) P fi=nl fo+ (n—1) £ o Rheer fo5— bRt fo+ Kacy™f .
By means of (2.20) we have
(5.3) I Si+Psf =28 folr= o fod) PP F) +IlP ol
_ —2nf.f=
Since we see from (2.13) and (2.20) that
W7 fo?l2=nf o fo+hosh . — (hee™f ) (hat [27) — (he°f€) (Ra®2 f9),
(5.3) reduces to

LG8 P ) = e fit o AN n f o fo— e,
| + (oF ) (B fo2) + (he2F ) (ha o F9).
.with the help of (2.19).
Substituting (5. 2) and (5.4) into the identity:
| P EEW L 9} = T F32) T ) +F0 Fis

we ﬁnd

(5. 5) Vb {fzb (chbz)} =%”h“sze_l_hcesze”2+nfzf.z_kcbzhcbx

+ (b fO) (Rt ) Fufey . fot (n—1) (p—Fof7)
+hz}lcezf exf x;c'{_chyzf dyf z

because of (2.14).



Generic submanifolds with normal structure of an odd-dimensional sphere () 159

On the other hand, we have from (2.24) that
(hee™f) (haf o f2) =p—f FoH P fo2+2 fe2p  f=
with the help of (2.14). Substituting this into the identity:
(5- 6) V‘(fzfc'z) =fu(7¢'fz) +nfxfz
which with (2.20) implies

(hee*f*) (hifo f2) +nfep . £,
=p—fo f2—n(a+2) fo f*HIV F=2+ (n+2) P (fo 7).

Using this, (5.5) reduces to
(5.7 VP[0 f5%) — (n+-2)7°(fo £5)
— 3o+ by of 2= by —n(n+2) fo F=-H 7, FI?
FBohyee fo°f 5+ K iy 401 5.
Since we have
lhes™ = vn+2 FrgplP=hoheb,+n(n+2) fo f2—2 Vn+2 P,
because of (2.23), (5.7) becomes
VALV f 5~ (a2 f o o +2/n+2£)
= L lhefor+haif 2 mp— Il — Va2 fog ol
P 22+ B ee Fo2f o+ Kaey™ F2F 25

Since M is compact orientable, we have (5.1).
From (2.25), (5.1) and (5.6) we have

LEMMA 5.2. Let M be a compact orientable n—dimensional generic
submanifold of S**! (1) with flat normal connection. Suppose that M is
minimal or the second fundamental form h* of M is positive semi—de-

finite. If
s — Va+2 fog P < np
at every point of M, where p=2m—n-+1, then the Sasakian structure

vector defined on S?**1 (1) is tangent to M, that is, f*=0, and the
structure induced on M is normal.

According to Theorem A and B in the section 1 and Lemma 5. 2, we
conclude the followings;

THEOREM 5, 3. Let M be a compact orientable n—dimensional generic
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submanifold of an odd-dimensional sphere S***! (1) with flat normal
connection such that the second fundamental form is positive semi—definite.
If the mean curvature vector is parallel in the normal bundle and satisfies
one of the followings:

(D) Wb — vVa+2 fogllP<n(@m—n+1) at every point of M

@) W s#ll2<a(@m—n-+1) at every point of M and the Sasakian
structure defined on S***! (1) is tangent to M. Then M is a pythagorean
product of the form

SPI(T1)><"‘XSPN(TN)’
where py, ..., py are odd numbers=1, ri2+-+riy=1, N=2m—n+2,

THEOREM 5.4. Let M be a compact orientable n—dimensional generic
submanifold of an odd-dimensional sphere S?m*! (1) with flat normal
connection. If (1) or (2) in Theorem 5. 3 holds, then M is a great sphere
S* (1) or a pythagorean product of the form

S?:(ry) X-o- X SN (ry),

where p1y ..., pn=1, pr+o-Fpy=n, 1<NZ2m—n-+2, in this case M
is of essential codimension N-1 and r,= v/ p,/n (t=1,2,...,N).
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