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GENERIC SUBMANIFOLDS WITH NORMAL STRUCTURE
OF AN ODD-DIMENSIONAL SPHERE (JI)

EULYONG PAK, V-HANG KI, JIN SUK PAK AND YOUNG Ho KIM*

1. Introduction

Many authors studied the so-called generic submanifolds of a Rieman­
nian manifolds and gave many valuable suggestions as the results ([2J,
[3J, [5J, [8J). And recently, the present authors studied generic
submanifolds of an odd-dimensional sphere under the condition that the
induced structure on the submanifold is normal and partially integrable.

The purpose of the present paper is to characterize Einstein generic
submanifolds of an odd-dimensional sphere tangent to the Sasakian
structure vector field and compact generic submanifolds.

In characterizing the generic submanifolds, we will make use of the
following theorems:

THEOREM A ([6J). Let M be an n-dimensional complete generic subma­
nifold with flat normal connection of an odd-dimensional unit sphere
S2m+1 (1) and let the Sasakian structure vector defined on S2m+1 (1) be
tangent to M. If the structure induced on M is normal and if the mean
curvature vector of M is parallel in the normal bundle, then M is a
pythagorean product of the form

SPj (rl) x .. ·XSPN(rN)

where Plo · .• ,PN are odd numbers~l,rI2+"'+rN2=1, N=2m+2-n.

THEOREM B ([6J). Let M be an n-dimensional complete minimal generic
submanifold with flat normal connection of an odd-dimensional unit sphere
S2m+1 (1) and let the Sasakian structure vector defined on S2m+1 (1) be
tangent to M. If the structure induced on M is normal, then M is a
great sphere of S2m+1 (1) or a pythagorean product of the form
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SPl (rl) X··· XSPN(rN),

Ph ·.·,PN;;;;;l,P1+···+PN=n, 1<N;;;;;2m-n+2 with essential eoaimension
N-1, where rt= -VPt/n (t=l, ... , N).

Manifolds, submanifolds, geometric objects and mappings discussed
in this paper are assumed. to be differentiable and of Coo. We use
throughout this paper the systems of indices as follows:

k,j, i, h=l, 2, ... , 2m+1; a, b., e, a, e=l, 2, ..., n,
x,y,z,u,v,w=1*,2*, ... ,p*, n+p=2m+1.·

The summation convention will be used with respect to those systems
of indices.

2. Generic submanifolds of a Sasakian manifold

Let if be a (2m+1) -dimensional Sasakian manifold covered by a
system of coordinate neighborhoods {U; x h} and (F/", gj;, F;) the set
of structure tensors of M. Then we have

(2.1) F/Fth= -o;h+F;Flt, FtF/=O, Fthpt=O, FtFt=l

and

(2.2)

Flt being the vector field associated with F;, that is, Fh= F;gilt, g;lt
being contravariant metric tensor of M. We also have

(2.3)

. and

(2.4) f7jF;h= _gj;Fh+o/"Fi ,

where f7j denotes the operator of covariant differentiation with respect
to the Christoffel symbols formed with gu.

Let M be an n-dimensional Riemannian manifold covered by a system
of coordinate neighborhoods {V: ya} and isometrically imInersed in M
by the immersion i : M~M. We identify i(M) with M and represent
the immersion by xlt=xlt (ya) •

If we put Bblt=ObXlt(Ob=O/oyb), then Bblt are n linearly independent
vectors of M tangent to M. Denoting by gcb the Riemannian metric
tensor of M, we have gcb=gj;B/Bb; since the immersion is isometric.
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If we denote by Cx h 2m + 1-n mutually orthogonal unit normals to M,
then we have gjiBeiC/ =0 and the metric tensor of the normal bundle
of M is given by gZy=gjiCziC/ =ozy, OZy being the Kronecker delta.
Therefore, denoting by Vb the operator of van der Waerden-Bortolotti

covariant differentiation with respect to the Christoffel symbols {cab}

formed with geb, we have equations of Causs and Weingarten for M

(2.5)
(2.6)

VeBbh=hcbxCxh,

VeCxh= -heaxBah

respectively, where heb
x are the second fundamental tensors with respect

to the normals Cxh and heax = hebYgbagyx, (gba) = (gba)-l.

Denoting by Kkjl, Kdeba and Kdeyx the curvature tensors of Gauss,
Codazzi and Ricci respectively

(2. 7) Kdcba = KkjihBiBeiBbiB ha+hdaxhebx - heaxhdbx,

(2.8) O=KkjihBiB/Bbicxh- (Vdhebx-VehdbX) ,
(2. 9) K X-K· hB kB iC iCx +h xh e -h xh edey - kJi d c y h de c y ee d y'

where we have put Bah=Bbjgbagjh, CXh=Cyigyxgjh and (gYx) = (gyx)-l.

An n-dimensional submanifold M is called a generic (an anti-holom­
orphic) submanifolds of the Sasakian manifold AI if M satisfies

Np(M) .IF(Np(M))

at each point PEM, where Np(M) denotes the normal space at P.
From now on, we consider generic submanifolds immersed in a (2m

+l)-dimensional Sasakian manifold AI. Then we can put in each
coordinate neighborhood

(2. 10)

(2.11)

FihBbi = haBah-hXCxh,

FihCxi =fxaBxh,

where fba is a tensor field of type (1, 1) defined on M,fex a local 1­
form for each fixed index x and fxx=feYgexgyx. Also, we can put the
Sasakian structure vector Fh of the form

(2.12)

fa and fx being vector fields defined on M and the normal bundle of M

respectively.
Transvecting(2. la) and (2.11) with Fhk respectively and using(2.l),
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(2. 10), (2. 11)

(2.13)
(2.14)
(2.15)

and (2. 12), we find

fbefea= -lha+fbfa+fbxfxa,
fxefeY=oxY-fxfY,

fbefex= - fbfx, fxefea fxfa,

where fe and fx are I-forms associated with fa and fx respectively, that
is, f e fagae and fx fYgyx.

Also, transvecting (2.12) with Fkk and using (2.1), (2.10) and (2.
11), we get

(2.16)
(2.17)

From (2. 12), we have

(2.18)

feaje+fxafx=o,
fexfe=O.

with the help of FtFt=l.

If we put feb feagba, fex f/gyx and fxe fxagea, then we can easily
verify that

feb= -fbe, fxe fex.

If we apply the operator V'e of covariant differentiation to (2. 10) and
take account of (2. 4), (2. 5) and (2. 6), then we have

( _gjiFk+oiFi) BiBi+hebxfxaBak
= (V'eiba) Bak+heaxfbaCi- (V'eibx)Ci+heaxibxBak,

which implies

(2.19)
(2.20)

V'efba= - gebfa+oeafb+hebxfxa-heaxfbx,
V'efbx=gebfx+heexfbe.

By the same way we can also obtain from (2. 11),

(2.21)
(2.22)

V'efxa=oeafx-h/xfea,
h/x feY = hceYfxe.

Differentiating (2. 12) covariantly and using (1. 3), we find

FiBi= (V'efa) Bai+hcaxfaCxk+ (V'cfx)Cxk_hcaxB},

from which, taking account of (2. 10),

(2.23)
(2.24)

V'efa fca+hcaxfx
V'efx= - fcx-hcexfe.
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The mean curvature vector of M given by Hh=l/nhxCx
h which is

globally defined on M is said to be parallel in the normal bundle if
V'chx=O, where hX=gebhebx.

The induced structure (f/, geb,fex,f,,fx) satisfying (2.13)""-'(2.18)
is said to be normal if

or, equivalently

(2.25)

Suppose that the ambient manifold is an odd-dimensional unit sphere
S2m+1 (1). Then, equations of Gauss, Codazzi and Ricci are respectively
given by

(2.26)
(2.27)
(2.28)

Kdeba =Odagcb -0,agdb+hdaxhebx - heaxhdbx,

V'dhebx - V'ehdbx=O,
Kdeyx= hdexheey - heeXhdey,

since the ambient manifold S2m+l (1) is a space of constant curvature 1.

3. Generic submanifolds of an odd-dimensional sphere whose
Sasakian structure vector is tangent to the submanifolds

In this section, we consider that M is an n-dimensional generic sub·
manifold of S2m+l (1) with the Sasakian structure vector Fh given by
(2. 12) tangent to M, that is, fX=O. Then (2. 13) ""-' (2. 24) reduce to

(3.1) f/f/= -oea+fefa+feYfya,

(3.2) f/f.x=O,
(3.3) f.xf'=O,
(3.4) f/ft=O

(3.5) fx'feY=oxY,

(3.6) fe!e=l,

(3.7) V'eiba= -gebfa+oc"fb+hcbxfxa-hea:ribx,

(3.8) V'efbx=heexibe, V'efxa= -h/:rf/,

(3.9) h/:rf/=heeYfx',

(3.10) V'eP fea

(3.11) fex+heexfe=o.

From (3. 1) and (3. 2), we can easily find that M admits the so-called
f-structure satisfying f3+f =0.
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The present authors proved

LEMMA 3.1 ([3J). Let M be an n-dimensional generic submanifold
of an odd-dimensional unit sphere S2m+1 (1) with flat normal connection.
If the structure induced on M such that the Sasakian structure vector of
S2m+1 (1) be tangent to M is normal, then we have

(3.12)
(3.13)

where we have put

(3.14)
(3.15)

hceXh{y=PyzXhcbz+OyXgcb'
Vchx=v;px,

Proof. Transvecting (2.25) with f/ and using (3.2), we find

hcexf/he=O,

from which, transvecting fab and making use of (3.1),

(3.16)

with the help of (3.5), (3.11) and (3.14) .

. Putting P ZYX= PZyWgwx, it is easily verified that P yZX is symmetric for
all indices because of (3.9) and (3.14).

If we transvect (3. 16) with hb
cz and make use of (3. 11) and (3. 16),

then we obtain

h{zhcexf/=PywXPzvWfbV-PyzXfb+OyXfbz,

from which, taking account of the fact that the normal connection of
M is flat and using (3. 11) and (3. 16),

P yzwP wvxfbv+g y:r fbx=PywxpZVwfbv+oyXfbz,

or, transvecting fJJ and taking account of (3.5).

(3.17)

because of P yzx is symmetric for all indices. Thus, it follows that

(3.18) PzxwPyWX=PxFzyX+ (P-1)gzy.

Differentiating (3. 16) covariantly along M and substituting (3. 8) and
(3.10), we gat
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from which, taking the skew-symmetric part with respect to d and c
and using (2.27),

(3.19) -2h/xheayfda= (VdPy"x)f/- (VePy"x)f?-2Py"Xhee"fde-2oyXfde

with the help of (2.25) and (2. 28) with Kdeyx=O. Transvecting(3.19)
with fwd and using (3.2) and (3.5), we get

(3.20) VePywx= (fweVePy"x)fc",

which and Py"x=P"yX imply

(VePy"x)fo"= (f/VePw"x)f/fbw.

Therefore (3.19) becomes

h/Xheayfda=py"xhee"fde+o/fde.

If we apply fbd to this and use (3. 1), we obtain

-h/Xhbey+Py"WPvwXfevf,/+feXfby
= -PyzXheb"+PywxPv"wfb"feV-oyXgeb+OyXf/fbz

with the help of (3. 11), or, take account of (3. 17), we can find
(3. 12).

In the next place, differentiation (2. 25) covariantly and substitution
(3. 7) yield

(Vdheex)fbe+ heex ( -gdde+Odejb+hdbYf/-h~J'foY)+ (Vdhbex)f/
+hbex ( -gdefe+o~fe+hdeYf/-h~yfcY) =0,

from which, taking account of (3. 11), (3. 12) and (3. 16),

(Vdhcex)foe+ (Vdhbex)f/=O,

or, taking the skew-symmetric part with respect to the indices d and
c, and using (2. 27),

(Vdhbex)f/ - (Vchbex)fde=o. .

The last equations give (Vdheex)foe=o by means of (2.27). Trans­
vection fab yields

Vdhcax= (Vdhcex)fyejaY+ (Vdhcex)fefa

with the help of (3. 1), which implies

(3.21) V dhx= (Vdheex)f/fey+ (Vdhcex)feJe.
But, we see from (3.3) and (3.11) that hcexjCfe=o. Differentiating
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this covariantly and making use of (3.4) and (3.10), we get (J7dhcez)

fCfe=O. Consequently (3.21) becomes

(3.22) J7dhz= (J7dhcez)f/fCY.

On the other hand, we have from (3.14)

pZ=hc/f/fCY.

If we differentiate this covariantly and take account of (3. 8), we find

J7dPz= (Vdhcez)f/fCY+2h/zhdayfeafcy,

which means

J7dPz= (Vdhcez)f/fcy

with the help of (3.5) and (3. 11). Thus, this together with (3. 22)
gives (3. 13). Thus, Lemma 3. 1 is completely proved.

LEMMA 3. 2. Under the same assumptions as those stated in Lemma
3.1, we have

(3.23) (VcPz) {(hw-Pw)Pvwz+2(n-m-1)ovz} =0.

Proof. Contraction (3.20) with respect to the indices y and x gives

(3.24) VcPw=(f w·J7eP.Jf/

Transvecting this with fac and making use of (3.2), we find

(3.25)

Also, transvection (3.24) with fC yields

(3.26)

becase of (3.3),

Differentiating (3.24) covariantly and substituting (3.8), we get

J7bJ7cP w= (fw·J7bJ7eP z)fcz+ (fweJ7ePz)hbazfca

because of (3. 25), from which, taking the skew-symmetric part with
respect to the induces band c and making use of (2. 25) ,

(3.27) (fweJ7bJ7eP z)f/- (fweJ7cJ7ePz)fbz+2(fweJ7ePz)hbazfca=0

because the normal connection of M is flat.
Transvection f/ implies

(3.28) f weJ7bV.Py= (fw"f/VcJ7eP z)/bz
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with the help of (3.5). From which, taking the skew-symmetric part
with respect to wand y and taking account of the fact that the normal
connection is flat

(3.29) fwepbPePy=f/PbPePw.

If we substitute (3.29) into (3.27), then we obtain

(fwepep z)hba"Ica=O,

from which, transvecting fdw and using (3.1),

(3.30) (PdPz)hbeXf!=O

because of (3.25) and (3.26). If we transvect (3.30) with fac and
use (3. 1), then we have

(3.31) (VdPz) (hbax - P ywx!bwfaY+f d aX+f a f bX) =0

with the help of (3. 11) and (3.16). Transvection hbav gives

(PdPz) (PvwxhW-PywXPvYw+ (n-2)ovx) =0

because of (3.5), (3. 11) and (3. 12). The last relationship becomes

(3.32) CV'dPz) {Pvwxhw-Pvwxpw+2(n-m-1)ovx} =0

with the help of (3.18) and the fact that p=2m+1-n. This means the
proof of our lemma.

4. Einstein generic submanifolds of an odd-dimensional sphere

In this section, we study the so-called Einstein generic submanifold
M of an odd-dimensional sphere admitting the Ricci tensor Kcb of the

form KCb=!f.gcb' where K is the scalar curvature of M. In particular,
n

M is said to be proper Einstein if K "* O.

We have from (2. 26)

(4.1)

which implies

(4.2) K=n(n-l) +hxhx-hcbxhcbx.

If the Sasakian structure vector Fh defined on S2m+l (1) is tangent to
M, then we can write (4.1) and (4.2) respectively as follows:

(4.3) K cb=2(n-m-l)gcb+ (h.x- Px)hcb:r,
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(4.4)

because of (3.12).

(4.5)

K=2n(n-m-1) + (hx- pX)hx

Since M is of Einstein, we get from (4.3)

K
2(n -m -l)gcb+ (hx- PX)hcbx=r;gcb.

Transvection f,/f.,b produces
K

(4.6) (hx- pX)Pyz:x+2(n-m-1)gy.,=-gy.,
n

because of (3. 5). Therefore, if M is a proper Einstein space, we have
from (3.23) that VcP.,=O and hence Vch.,=O because of (3.13), that
is, the mean curvature vector is parallel in the normal bundle. Thus,
we have by means of Theorem A in the section 1.

THEOREM 4. 1. Let M be an n-dimensional complete proper Einstein
generic submanifold with flat normal connection of an odd-dimensional
unit sphere S2m+1 (1) and let the Sasakian structure vector defined on
S2m+1 (1) be tangent to M. If the induced structure on M is normal,
then M is a pythagorean product of the form

Sh (rI) x··· XSPN(rN) '

where .Pl> ... ,PN are odd numbersG1,r12+"'+rN2=1, N=2m+2-n.

THEOREM 4.2. Let M be an n-dimensional complete locally irreducible
generic submanifold with flat normal connection of an odd-dimensional
sphere S2m+1(1) and let the Sasakian structure vector defined on S2m+l(1)
be tangent to M. If the induced structure on M is normal and the square
of the length of the Ricci tensor is constant, then we have the same
conclusion as that of Theorem 4. 1.

Proof. Transvecting (3. 31) with gba and using (3.3), we get

(VdPx) (hx- px) =0,

or, using (3. 13),

(Vdhx) (hx- px) =0.

This fact together with (3. 13) implies the scalar curvature K given
by (4.4) is a constant.

From the Ricci identity and the fact that the normal connection is
flat:
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we have by contracting with respect to d and b

pdpdhca x- PcPahx= Kcehaex - Kdcaehdex

with the help of (2.27). Substituting (2.26) and (4.3) into the right
hand side of this equation and taking account of (3.12), we obtain

(4.7)

We now apply the operator pdpd to (4.3) and make use of (3. 13)
and (4. 7). Then we have

pdpdKcb= (hx- px) pdpdhxcb'

which becomes

pdpdKcb=pdpdK

because of (4.4). On the other hand, K being constant, we find

(4.8) pdpdKcb=O.

Therefore, the identity:

(4.9)

gives PdKcb=O because of the fact that KcbKcb is a constant, where L1
is the Laplacian given by L1 = gcbpcPb. Hence the Ricci tensor Kcb has
the form

K
Kcb=-;-gcb (K*0)

since M is locally irreducible, which indicates M is proper Einstein.
Thus, Theorem 4. 1 gives our assertion.

Replacing the condition the square of the length of the Ricci tensor
being constant in Theorem 4.2 by the compactness of M, we see from
(4.8) and (4.9) that the Ricci tensor is parallel. Thus we have

COROLLARY 4. 3. Let M be an n-dimensional compact orientable locally
irreducible generic submanifold with fiat normal connection of an odd­
dimensional sphere S2m+l (1) tangent to the Sasakian structure vector. If
the structure induced on M is normal, then M is the same type as that
of Theorem 4.1.

5. Compact generic submanifolds of S2m+l (1)

First of all, we prove
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'- LEMMA 5. 1. Let M be a compact orientable n-dimensional generic
submanifold of S2m+1 (1). Then we have

(5.1) fM {~ Ilhcexj{+hhexj/112+np-l!hchx- -yn+2fXgch I12

+ IlvcfxI12+hzhcezfexfxc+ Kdc:/fdYfxc} *1=0,

where *1 denotes the volume element of M.

Proof. From the Ricci identity for fhx :

VdVc!hx-Vcvdfhx= - Kdchafax+ KdcyXfhY,

we have

VhVcihx= nVcfc+ Kcefex+ KdcyxfdY

with the help of (2.20), or substitute (4.1),

(5.2) vhVcfhx=nVcfx+ (n-l) fcx+hzhmfex-hcazheazfex+ KdcyXfdy.

By means of (2.20) we have

(5.3) ~ IIVcihx+VhfcX-2gchfxIl2= (Vc!hx) (VhfCx) +IIvc!hxll2

-2nfxfx.

Since we see from (2.13) and (2.20) that

IIvc!hxI12=nfxfx+hchxhchx- (hcexfze) (hdcxf/) - (hcexfe) (hdcxfd) ,

(5.3) reduces to

(5.4) (Vc!hx) (vbfxc) = ~ IIhcexihe+hhexf/1I2+nfxfx-hcbxhchx

+ (hcexfez) (hdcxfzd ) + (hcexfe) (hdcxfd ) •

.with the help of (2.19).

Substituting (5. 2) and (5. 4) into the identity:

V'h Uxc(Vc!hx)} = (Vc!hx) (V'bjtx) +jc.xV'bVcfhx,

we :find

(5.5) Vb Uxc(Vc!hx)} = ~ IIhcexfhe+hcexiheIl2+nfzfx-hcbzhcbx

+ (hcexfe) (hdczJd) +nfcxVcfx+ (n-l) (p-fxfx)
+hzhcez pXfxc+KdcyXfdYfxc

because of (2.14).
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On the other hand, we have from (2. 24) that

(hcexfe) (hdCxfd) =p-fxfx+lI17cfxI12+2fcxVcfx

with the help of (2. 14). Substituting this into the identity:

(5.6) Vc (fxfcx) jcx(Vcfx) +nfxfx

which with (2. 20) implies

(hcexfe) (hdCxfd) +nfcxVcfx
=P-fxfx-n(n+2)fxfx+ 11 17cf xll2+ (n+2)Vc(fxfcx).

Using this, (5. 5) reduces to

(5. 7) Vb(fxcVcf,/) - (n+2)Vc(fxfcx)

= ~ IIhcex!be+hbexf/112-hcbxhcbx-n(n+2) f ... f x+IIVcf xIl 2

+h"'hee;:fexfxc+ KdcyXfdYfxc.

Since we have

IIhcbx - v'n+2fxgcbI12=hcbxhcbx+n(n+2)fxfx-2 v'n+2 vefe

because of (2. 23), (5. 7) becomes

vc UxbVbfcx- (n+2)fxfcx+2 v'n+2fcl
1 -­

="2llhcex!be+hbexf/1I2+np-llhcbx- v'n+2fXgcb I12

+ IlvcfxIl2+h"'hce.. fexfxc+KdcyXfdYfxc•

Since M is compact orientable, we have (5. 1).
From (2. 25), (5. 1) and (5. 6) we have

LEMMA 5. 2. Let M be a compact orientable n-dimensional generic
submanifold of S2m+l (1) with flat normal connection. Suppose that M is
minimal or the second fundamental form hcbx of M is positive semi-de­
finite. If

Ilhcbx- v'n+2fXgcbI12~np

at every point of M, where p=2m-n+1, then the Sasakian structure
vector defined on S2m+l (1) is tangent to M, that is, fx=O, and the
structure induced on M is normal.

According to Theorem A and B in the section 1 and Lemma 5. 2, we
conclude the followings;

THEOREM 5. 3. Let M be a compact orientable n-dimensional generic
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submanifold of an odd-dimensional sphere S2m+1 (1) with flat normal
connection such that the second fundamental form is positive semi-definite.
If the mean curvature vector is parallel in the normal bundle and satisfies
.'me of the followings:

(1) IIhcbx- vn+2fXgcbIl2~n(2m-n+1) at every point of M
(2) IIhcbxII2~n(2m-n+1) at every point of M and the Sasakian

structure defined on S2m+1 (1) is tangent to M. Then M is a pythagorean
product of the form

SPl(rl) X "'XSPN(rN),

where Ph ... , PN are odd numbers;;;;;' 1, r12+"'+r2N=1, N=2m-n+2.

THEQREM 5.4. Let M be a compact orientable n-dimensional generic
submanifold of an odd-dimensional sphere S2m+l (l) with flat normal
connection. If (1) or (2) in Theorem 5. 3 holds, then M is a great sphere
Sn (1) or a pythagorean product of the form

SPl(rl) x··· XSPN(rN) ,

where PI, ... ,PN;;;;;'l, PI+"'+PN=n, 1<N~2m-n+2, in this case M
is of essential codimension N-1 and rt= VPt/n (t=l, 2, ... , N).

References
1. B. Y. Chen, Geometry of submanifolds, Marcel Dekker Inc., N. Y., 1973.
2. U-H. Ki, On generic submanifolds with antinormal structure of an odd­

dimensional sphere, Kyungpook Math. J. 20 (1980), 217-229.
3. U-H. Ki and Y. H. Kim, Generic submanifolds with parallel mean curvature

vector of an odd-dimensional sphere, Kodai Math. J. 4 (1981), 353-370.
4. U-H. Ki and ]. S. Pak, Generic submanifolds of an even-dimensional Eucl­

idean space, ]. Diff. Geo. 16 (1981), 293-303.
5. U-H. Ki, ]. S. Pak and Y. H. Kim, Generic submanifolds of a complex

projective space with parallel mean curvature vector, Kodai Math. J. 4
(1981). 137-151.

6. Eulyong Pak, U-H. Ki, J. S. Pak and Y. H. Kim, Generic submanifolds
with normal. structure of an odd-dimensional sphere (I ), K. Korean Math.
Soc. 20 (1983), 173-193.

7. J. S. Pak, Note on anti-holomorphic submanifolds of real codimension of a
'complex projective space, Kyungpook Math. J. 20 (1980), 59-76.

8. K. Yano and S. Ishihara, Submanifolds with parallel mean curvature vector,
]. Diff. Geo. 6 (1971), 95-118.



Generic submanifolds with normal structure of an odd-dimensional sphere (ll) 161

9. K. Yano and M. Kon, Generic submanifolds, Annali di Mat. 123 (1980),
59-92.

Seoul National University
Seoul 151, Korea
and
Kyungpook National University
Daegu 635, Korea




