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GENERALIZED METRIC SPACES DEFINED BY
SEPARATION PROPERTIES

JUNGSOOK SAKONG

1. Introduection

Many of the generalized metric spaces can be characterized by
“separation properties”. We shall unify and reformulate some known
spaces by use of separation properties of COC-maps. The major results
are visualized by a table at the end of this section. Also we shall
define two classes of new spaces, called 7*-spaces and kr*-spaces,
which are in between semistratifiable spaces and stratifiable spaces.
We investigate properties that are enjoyed by these classes of spaces.
Important results are: (1) a E-semistratifiable space is a 7*-space and
(2) there exists a 7*-space which is not #—semistratifiable.

Let X be a space. A function g from NXX (N=the positive integers)
to the topology of X such that

zeg(n, )
g(r+1,7)Cgn, )
for every (n,z)&NXX, is called a COC—map (==countable open
covering map) [8]. Note that if we let G,={g(n,z) :z=X}, then
G1, G2, Gs... is a sequence of open covers of X such that G,:; refines
G,. For any subset § of X, we define

gn,8)=Ulgln,z) : z€8)}
g¥(n,8)=g(n,g(n8)).

As usual, S~ denotes the closure of S in X. Throughout this paper,
all spaces will be T;-spaces.

Let 4,8 be families of subsets of X. Consider the following
separation properties on a COC-map g.
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fig.1) A regular space is [} if and only if it has a COC-map which
separates £ from # (doubly, regularly, disjointly, starly).
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DEerFINITION. For each Aed, Be &, if there exists n& N such that

(1) Ang(n,B)=¢, then g separates £ from {

(2) ANg2?(n, B)y=¢, then g separates doubly £ from #

(3) ANg(n, By-=¢, then g separates regularly £ from #

4) g, A) Ng(n, B)=¢, then g separates disjointly £ from A
(5) ANst(B,G,)=¢, then g separates starly £ from A.

Our main results can be tabulated as fig. 1:
Interrelations between various spaces can be depicted as fig. 2:

2. Separating points (or compacta) from closed sets

In this section we consider the spaces with a COC-map g which
separates points (or compacta) from closed sets.

A space is a y-space [7] if it has a COC-map g satisfying: if z,&
g(n,v,) and y,=g(n,z) for each n& N, then =z is a cluster point of
{z.}. It is also called a co-Nagata space [9], or a co—convergent space
(117

Let P be a collecion of ordered pairs of subsets of a Tj-space X
such that, for each p=(p,, po) €P, p, is open and p,Cp,, and such
that, for every z&X and every neighborhood U of z, there is a p=
P for which z€p,cp,cU. Then P is called a pair base for X.
Moreover P is called cuskioned if, for every QCP,

LU{p:pe@ ] CU {p:: pEQ)

and P is o-cushioned if it is a union of countably many cushioned
collections. An Ms—space [2] is a T,-space with a o¢—cushioned pair
base.

A Ti-space X is called a stratifiable space [1] if, to each open Uc
X, one can assign a sequence {U,|ln< N} of open subsets of X such
that

(a) U—cU
(b) UU,=U
(c) U,=V, whenever UCV.

It is well-known that Mj-spaces are exactly the stratifiable spaces [1].
A first countable stratifiable space is called a Nagata space. There
is another characterization due to Hodel. A Ty-space is Nagata if and
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only if it has a COC-map g satisfying: if g(,z) Ngn, x,) #¢ for
nEN, then z is a cluster point of {z,}.

A space is developable if there exists a sequence of open covers {U, :
nE N} such that {st(z, U,) : n&N} is a local base at z. A regular
developable space is a Moore space. A developable space can be charac
terized by having a COC-map g satisfying: if z,z,=g(n,y,) for ac
N, then z is a cluster point of {z,}.

Now we characterize the spaces mentioned above via separation
properties on a COC—map.

THEOREM 2.1. A space is
(1) first countable if and only if it has a COC—map which separates

points from closed sets.

(2) a y-space if and only if it has a COC-map which separates
doubly points from closed sets.

(3) a first countable regular space if and only if it has a COC-map
which separates regularly points from closed sets.

(4 @ Nagata space if and only if it has a COC-map which separates
disjointly points from closed sets.

(5) a developable space if and only if it has a COC—map whzc/z
separates starly points from closed sets. ‘

Proof. (1) It is clear.

(2) See [9; Theorem 2.1].

(3) Suppose that X is first countable and regular. Each z€X has
a local base. We denote it by {g(n,z) |n=N}. We may assume that
g is a COC-map. Let F be a closed set and z¢ F. Since X is regular,
there is a neighborhood U of z such that U-NF=¢. Choose nEN
so that g(n,z) CU. Then g(n,z)~ N F=¢. Therefore, g separates
regularly z from F. The converse is clear.

(4) Suppose that X is Nagata. We use Hodel’s characterization of
Nagata spaces. Let g be a Nagata function for X. We claim that g
separates disjointly points from closed sets. Suppose the contrary.
Then there exist a closed set F and a point z& F such that g(n,2) Ng
(n, F) #¢ for every n. This means that there exists z,&F so that g
(n,z) Ng(n, z,) #¢ for each n. Since g is a Nagata function, =z is a
cluster point of {z,}. As before, {z,} is a sequence in the closed set
F clustering to z. However, z&F, which is a contradiction.
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For the converse suppose that g(n, z) Ng(n, z,) #¢ for every n and
that z is not a cluster point of {z,} - If we take F={z,}~, then z&
F. This is contradictory to the assumption that there exists 7, such
that g(ng, ) Ng(ng, F) =¢, because g(n,z,) “g(n, F) for every =.
Therefore z must be a cluster point of {z,}.

(5) Let g be a COC-map and F be a closed set not containg =z.
Then st(z,G,) NF+#¢, where G,= {g(n,z) : z€X}, if and only if
there exist z, and y, such that z,,z&g(n, y,). By the same argument
as employed in (4) above, we are done.

COROLLARY 2.2. A space is metrizable if and only if it has a COC-
map separating disjointly and doubly (or disjointly and starly) points
from closed sets.

Proof. Let X be a metric space. Take g(n, x)=S(x, %), open —%;

—ball centered at z. Then g is a desired COC-map. For the converse,
note that a Nagata space is metrizable if it is a y-space or a develop-
able space. See [7;(6.1)].

THEOREM 2.3. For a regular space X, the following are eguivalent:

(1) X is a r-space,

(2) X has a COC-~map which separates compacta from closed sets,

(38) X has a COC-map which separates doubly compacta from closed
sets, and

(4) X has a COC-map which separates regularly compacta from closed
sets.

Proof. We will prove only the equivalence of (2) and (4). For the
rest, see [9; Theorem 2.1].

(264) As X is regular, disjoint compact set K and a closed set F
can be separated by open sets, say UDK, VOF with UNV=¢. Let
nE N be such that g(n, K) cU. Then g(n, K)~cU-cVe. Thus g(n,
K) " NF=¢. The converse is trivial.

THEOREM 2.4. For a regular space X, the following are equivalent;

(1) X is metrizable,

(2) X has a COC-map whick separates disjointly compacta from closed
sets, and

(8) X has a COC-map which separates starly compacta from closed
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sets.

Proof. (1=>2) and (1=3). Let X be a metric space. Take
g(n, ) =S(x;—};), open %——«ball centered at x. In a metric space,

for any disjoint compact K and closed F, d(K, F)>0. Therefore,
g satisfies (2) and (3).

(2=>1) Such a g satisfies the condition in Theorem 2.1 (4) and
Theorem 2.3 (2). Therefore the space is Nagata and y-space, which
is metrizable. See [7;(6.1)].

(3=>1) Such a g separates starly points from closed sets, so that X
is developable. Also g separates starly closed sets from compacta so that
X is k-semistratifiable (See Theorem 3.4 (1)). By [10; Theorem 3.
27, a first countable k-semistratifiable space is stratifiable. Therefore
X is a developable stratifiable space, which is metrizable.

Q.E.D.

REMARK. Let g be a COC-map. If g? separates 4 from closed sets,
then gt separates ¥ from closed sets for all £>1.

3. Separation of closed sets from pomts (or compacta)

In this section we study spaces which have a COC-map Wthh
separates closed sets from points (or compacta). First we need some
definitions.

A space X is semistratifiable [ 3] if, to each open set UcX, one
can assign a sequence {U, : nE N} of closed subsets of X such that

(a) ) UNUn= U’
(b) v,cv, if UcV.

A correspondence U— {U, : €N} is a semistratification for the space
X whenever it satisfies the conditions (a) and (b). A semistratifiable
space can also be characterized as a space having a COC-map g
satisfying: if z=g(a, z,) for every ne N then z is a cluster point
of {z,}.

A space X is k-semistratifiable [10] if it has a semistratification U
—{U, : n= N} with the property that whenever K< U with K compact
and U open in X, there is an e N with K< U,. Clearly, stratifiable
=pk-semistratifiable=>semistratifiable. It is known that a first countable
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k-semistratifiable space is stratifiable(and hence Nagata).

DEFINITION 3.1. A space is a 7%-space if it has a COC-map
satisfying: if z€g(n,y,) and y,€g(n,z,) for each n, then z is a
cluster point of {z,}.

THEOREM 3. 2. A space is (1) semistratifiable if and only if it has
a COC-map which separates closed sets from points.

(2) r*-space if and only if it has a COC—-map which separates doubly
closed sets from points,

(8) stratifiable if and only if it has a COC-map which separates
regularly closed sets from points,

(4) Nagata if and only if it has a COC-map which separates
disjointly closed sets from points,

(5) developable if and only if it has a COC-map which separates

starly closed sets from points.

Proof. (1) The proof is evident.

(2) Let g be a COC-map satisfying the condition in (3.1). Let F
be a closed set not containing z. Suppose z€g2(n, F) for every n€&
N. Then there are z,=F and y,€X so that z€g(n,y,) and y.Sg
(n, z,). By hypothesis, z is a cluster point of {z,}. This contradicts
z&F. Conversely, let g separate doubly closed sets from points and
let z€g(n,y,) and y,Eg(n, z,). If = is not a cluster point of {z,},
F=/{z,}~ is a closed set not containing z. Since g separates doubly
closed sets from points, there must exist k€N so that zeg?(%, F).
However ze<g(k y;) and y,cg(k ;) with z,€F, which is a
contradiction.

(3) See [8].

(4) A COC-map separates disjointly closed sets from points if and
only if it separates disjointly points from closed sets. Now apply
Theorem 2.1 (4).

(5) This is a trivial result of Theorem 2.1 (5), which can be
obtained by the same argument as employed above. Namely, sz(A4,
G,) NB#¢ if and only if ANst(B,G,) #¢ for any A,BCX. Take
A=a closed set and B=a point.

COROLLARY 3.3. For a space, Nagata = stratifiable = 7*—space =
semistratifiable.
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We now turn our attention to the separation properties of closed
sets from compacta. As in the case of Theorem 2.1 vs Theorems 2.3
and 2.4, the conditions with compacta are stronger than those with
points.

THEOREM 3.4. A space is (1) k-semistratifiable if and only if it has
a COC~map which separates closed sets from compacta,

(2) stratifiable if and only if it has a COC-map whick separates
regularly closed sets from compacta,

(3) metrizable if and only if it has a COC-map which separates
disjointly (or starly) closed sets from compacta.

Proof. (1) It is clear. See [§].

(2) Let X be stratifiable. There exists a COC-map g separating
closed sets from points regularly by Theorem 3.2 (3). We claim that
g separates regularly closed sets from compacta. Let FN K=¢ with F
closed and K compact. For each z€X, there exists n,=N so that
gln, F)~#»z. In other words, g(n,, F)®=g(n,, F)~° is an open
neighborhood of z. Since K is compact, {g(n,, F)~¢:z<K} has a
finite subcover, say {g(n;, F)~¢:z;€K, 1<i<y}. Here n;=n,. Let
e=max {n; : 1<i<<7}. Then g F)~NK=¢ which we desired. The
converse is trivial by Theorem 3.2 (3).

(3) If a COC-map separates disjointly (or starly) closed sets from
compacta, it does so compacta from closed sets. Now we can apply
Theorem 2. 4.

4. 7*-spaces and ky*-spaces

We have defined 7*-spaces in section 3. Now we study such spaces
and shall find that they are very similar to semistratifiable ones.

THEOREM 4.1. The countable product of 1*—spaces is a y*~space.

Proof. For each i, let X; be a 7y*-space with a COC-map g;
separating closed sets from points doubly. (See Theorem 3.2.) Let
X=T]X; be the product space, and let z; : X—X; be the projection.
For each 7,» and z€X, let k;(n,z)=g;(n,7;(z)) if i<j, and X; if

i>j. Now let g(a, x)=ﬁ1b,- (n, z) for each (n,z) €NXX. That is,

g(”’ x) =gl(n: xl) ng(ﬂ, .’1:2) X '"gn(ns xn) ><Xn+1><Xn+2>< e
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where z= (x4, 5, ...).
Clearly each g(n,z) is open, zxcg(n,z) and glr+1,z)cg(n, x)
for each (n,z) €NXX. We claim that g separates closed sets from
3
points doubly. Let U=NT][;7! U; be a basic open set, where U;,CX;
i=1

is open. Then
k
F= Uc:,L_Jl I7HUs.

Therefore, it is enough to prove that: For xz& [];,71(Uf). there exists

n;GN such that x&gz(ni, n‘,-l (Uic))_ Note that ni_l(Uf) =X, XX,

KKK XXy XUFEXX ;13X e+, and x;¢ Ug. Since g; separates U*

from z; doubly by the hypothesis, there exists n;,&N such that z;&

g2(n;, Uf). Now [, (g, UF)) =g%(m;, [1,71(U#)) if i<nm; (we

can take »; as big as we please). Therefore z& g?(n;, [1,71(U;%)).
THEOREM 4. 2. A subspace of y*—space is a 7*—space.

Proof. Let g be a COC-map on X separating doubly closed sets
from points, Let Y be a subspace. Then the restriction & of g on
NX]Y,

h(n,z)=g(n,z)NY
is a desired COC-map.

THEOREM 4. 3. The union of two closed (in the union) y*—spaces is a
r*-space.

THEOREM 4. 4. A k-semistratifiable space is a y*-space.

Proof. et g be a COC-map on X separating closed sets from
compacta. Suppose that there exists z&F with F closed and z€&
g2(n, F) for every n. Then we have sequences {z,}, {y,} such that

zeg(n, y.),y.Sgn z,), z,EF.

Since {y,} converges to xr, K=={z,y1,¥s ...} 18 compact. We may
assume that KN F=¢. As g separates closed sets from compacta, there
exists £ N such that g (&, F) Nk=¢. However, y;&g (%, z;) N K, which
is a contradiction. Thus we have shown that g separates doubly
closed sets from points.

ExAMPLE 4.5. The converse is not true. There exists a 7*-space
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which is not A-semistratifiable. Let X be the upper half plane including
the real axis L. We let each point of; X—L be open and take as a
neighborhood basis of points &L a”V-vertex at z, sides of slopes

+1 and height —’1;-

CRT
1

N L

We define a COC-map by
{z}, f reX—1

g, 2) = the V-vertex at z of height %, if zeL

Clearly g2=g. Since g separates closed sets from points, so does g2
Thus X is a y*-space. It is known that X is a Moore space (see
[51), and hence first countable. I X is A-semistratifiable, it would
be stratifiable by [[10], Theorem 3.2] and hence it would be para-
compact. However X is not even normal. Consider the two closed
sets, rationals and irrationals in L.

THEOREM 4. 6. If a space is a r*-space and a 7-space then it is a
semistratifiable y—space. A semistratifiable 7—space is developable.

Proof. The first implication is obvious by definition. For the second,
‘see [[6]; Proposition 4.2, and [5]].

DEFINITION 4.7. A space is ky*-space if it has a COC-map which
separates doubly closed sets from compacta.

THEOREM 4.8. For a space X, stratifiable = ky*—space = k-semistra-
tifiable. If X is first countable, all these three conditions are equivalent
(and X is Nagata.)

Proof. Note that if a COC-map g separates regularly closed sets
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from # (any family), then it separates doubly closed sets from A.
(Take d=compacta.) For the second statement, see [[10], Theorem
3.2

5. Symmetric COC-maps

Since symmetry properties of COC-maps may give rise to stronger
results, we take up this subject in this section.

DEFINITION 5.1. A COC-map g on X is said to be symmetric if
g=g*, where g*(n,z) is defined by z€g*(n,y) if and only if y&
g(n,z). That is, z&g(n,y) if and only if yEg(n,z) for every (n,z)
e NXX.

THEOREM 5.2. A regular space is (1) o-semimetrizable if and only if
it has a symmetric COC-map separating points from closed sets,

(2) metrizable if and only if it has a symmetric COC—map separating
doubly (disjointly, or starly) points from closed sets.

Proof. (1) A COC-map separates points from closed sets if and only
if z, €g(n,z) for each n implies that the sequence {z,} converges
to z. Now, by [[4], Theorem 2.1], we are done.

(2) If X is a metric space, we take

g(n, ) =S(x;%)

the open —}I—ball centered at z. Then g is a symmetric COC-map

separating points from closed sets doubly (regularly, disjointly or
starly).

For the converse, let g be a symmetric COC-map. If g separates
doubly points from closed sets, then g is a y-function so that z,&
g(n,y,) and y,=g(n,z) imply {z,} converges to 2. Now suppose that
¥:Eg(n,z) Ngln,z,). Then, by symmetry, z,g(n,y,). Therefore
{x,} converges to z. However, this is exactly a characterization of a
Nagata space. Since a Nagata y-space is metrizable, we are done.

If g separates disjointly points from closed sets, then g is a Nagata
COC-map. That is, if g(n,z) Ng(n,z,) #¢, then {z,} converges to
z. By symmetry, g is a COC-map giving rise to a developable space.
Since a developable Nagata space is metrizable, X is metrizable.
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If g separates starly points from closed sets, g is a COC-map giving
rise to a Nagata function as can be seen by the argument above.
Therefore, X is again a developable Nagata space, and hence is
metrizable.

QUESTION 5. 3. Suppose that X has a symmetric COC-map separating
regularly points from closed sets. Is X metrizable? It can be shown
that such a space is a developable y-space.

THEOREM 5.4. A regular space is metrizable if and only if it has a
symmetric COC-map separating doubly (regularly, disjointly, or starly)
closed sets from points.

Proof. Suppose that g separates doubly closed sets from points.
Then g separates disjointly closed sets from points since g is sym-
metric. Thus X is a Nagata y-space, and hence is metrizable.

Let g separate regularly closed sets from points. Let z&F with F
closed. Then ze¢g(k F)~ for some k Since {g(n,z) :n=N} is a
local base at z, g(m,z)Ng(m, F)=¢ for some m. Thus such a g
separates disjointly closed sets from points.

If a symmetric COC-map g separates dls]omtly (or starly) closed
sets from points, it separates disjointly (or starly) points from closed
sets. Now by Theorem 5.2 (2), X is metrizable.

REMARK 5.5. Let g be a COC-map. If g is symmetric and separates
points from closed sets, then it separates closed sets from points.
However, the converse is not true. That is, even though X has a
COC-map g; separating points from closed sets and a COC-map g3
separating closed sets from points, it is not true in general that X has
a COC-map, separating points from closed sets, which is symmetric.
For example, consider a semimetric space which is not o-semimetrizable.

Similarly, a space which is 7 and 7* is not necessarily metrizable.
For example, the space described in Example 4.5 is 7 and 7*, because
the COC-map defined there separates doubly points from closed sets,
and closed sets from points. There does not exist a symmetric COC~
map separating doubly points from closed sets.

THEOREM 5.6. A regular space is metrizable if and only if it has a
symmetric COC-map g separating compact sets from closed sets.
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Proof. Such a space is a 7y-space by Theorem 2.3. Since g is
symmetric, g separates closed sets from compacta, and hence X is k-
semistratifiable. By [107, a first countable Z-semistratifiable space is
stratifiable. Therefore, X is a Nagata y-space, so it is metrizable.
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