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ON CR-SUBMANIFOLDS OF LOCALLY CONFORMAL
KAHLER MANIFOLDS

Kojl MATSUMOTO

0. Introduction

Recently, A. Bejancu [1,2] introduced the notion of a CR-
submanifold of a Kihler manifold and B.Y. Chen [4,5], D.E.
Blair and B.Y. Chen [3] and K. Yano and M. Kon [14,15] had
a lot of very interesting results of this submanifold.

On the other hand, T. Kashiwada [7,8,9], 'S. Tachibana [11]
and I Vaisman [12,13] studied locally conformal Kahler manifolds
and the author [10] considered submanifolds of locally conformal
Kihler manifolds.

In this paper, we shall consider CR-submanifolds of locally conformal
Kihler manifolds.

1. Preliminaries

Let M(J, <,>, @) bea locally conformal Kahler manifold (an 1 c.
K-manifold). Then, by definition, at any point of M, there exists a
neighborhood in which a conformal metric {,)*=¢"2°( ) is a Kihler
one, ie.,

y*(e?J)=0, dp=a,

where p* is the covariant differentiation with respect to {,)*. By
virtue of the above equation, we get

(1.1) (F29) (Y, X)=~{e, Y)¢(Z, X) +{X, Ja){Z, Y)
—{a, X3¢(Z, Y) —¢(a, Y)<Z, X),

where 77 is the covariant differentiation with respect to ¢, ),
(1.2 (X, Y)={JX, Y)
and we write @(X)=<{a, X) for any vector fields X, Y and Z on M.
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The following proposition is well-known [7];

PROPOSITION 1.1. A Hermitian manifold M(J,{,>) is an L. c.
K-manifold if and only if there exists a global 1-form a satisfying

(1.3) (F20) (Y, X)=—<B, YXZ, X)+{B, X)XZ, Y}
1.4) (VYO—’) X= (an) Y,

where {B, X)=<{Ja, X).

In an L. c. K-manifold M, we define a symmetric tensor field P(X, Y)
as

1.5 PV, X)=—Fr@)X—a(V)aX)+5lalXY, X,

where ||a|| denotes the length of the Lee form a with respect to {, ).
In this paper, we assume that the tensor field P is hybrid, that is,

(1.6) P(Y,JX)+P(JY, X)=0.

An L c. K-manifold M is called an I ¢. K-space form if it has a
constant holomorphic sectional curvature H. Then the Riemannian
curvature tensor R of an 1 c. K-space form M(H) with constant
holomorphic sectional curvature H is given by [7]

(1.7) 4R(X, Y;Z, W)=H{X, WXY, Z)—(X, Z){Y, W)+
+¢(X, W)¢(Y, Z) —¢(X, 2)¢(Y, W) —2¢(X, Y)$(Z, W)}
+3{P(X, W)Y, Z)—P(X,Z){Y, W)X, WHP(Y, Z)
—( X, Z)P(Y, W)} —P(X, W)o(Y, Z)+ P (X, 2) (Y, W)
—¢(X, W)B(Y, 2)+¢(X, Z) B(Y, W) +2{P(X, Y)$(Z, W)
+¢(X, Y)P(Z, W)},

where

a7 PX,Y)=—PX,JY).

2. Submanifolds of an 1. c¢. K~-manifold

Let M(J, {,), @) be a complex m~dimensional 1. c. K-manifold
and M be a real n—dimensional Riemannian manifold isometrically
immersed in M We denote by the same {,)> the metric tensor
induced on M. Let [ be the covariant differentiation with respect to
the induced metric on M. Then the Gauss and Weingarten formulas
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for M are respectively given by

(2.1) PyX=pyX+a(Y,X),
(2.2) Pxt=—AX+TiE

for any vector fields Y and X tangent to M and any vector field &
normal to M, where ¢ denotes the second fundamental form and p*+
the linear connection, called the normal connection, induced in the
normal bundle T1M. The second fundamental tensor A, is related to
o by

(2.3) (AX, Y)=(0(X, Y), &).
For any vector field U tangent to M, we put
@29 JU=TU+QU,

where TU and QU are the tangential and the normal components of
JU, respectively. Then T is an endomorphism of the tangent bundle
TM and Q is a normal-bundle-valued 1-form on TM.

For any vector field £ normal to M, we put

(2.5) JE=tE+fE,

where ¢£ and f£ are the tangential and the normal components of J&,
espectively. Then f is an endomorphism of 7'M and ¢ is a tangent-
bundle-valued 1-form on T*M.

For the second fundamental form ¢, we define the covariant
differentiation with respect to the connection on TM@T'M by

(2.6) (Px0)(Y,2)=r%(0(Y,2))~o(PxY,Z)~0 (Y, VxZ)
for any vector fields X, Y and Z tangent to M[6]. Then the equations
of Gauss and Codazzi are respectively given by
2.7 R(X,Y:;Z, W)=R(X, Y;Z,W))+<{a(X, W),0(Y,Z))
—~(o(X, 2),0(Y, W),
(2.8) R(X, Y)Z)+=(Vx0) (Y, Z) — (Pyo) (X, Z)
for any vector fields X, Y, Z and W tangent to M, where R denotes

the Riemannian curvature tensor with respect to the induced metric on
M and (R(X, Y)Z)+ means the normal component of R(X, Y)Z.
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3. CR-submanifolds of an 1. ¢. K-manifold.

In this section, we shall define a CR-submanifold of an L c. K-
manifold and give several fundamental properties of this submanifold.

DEFINITION 3.1. A submanifold M of an L c¢. K-manifold M is
called a CR-submanifold if there exists a differentiable distribution D :
z—D,c T,M on M satisfying the following conditions;

(i) D is holomorphic, i.e., JD,=D, for each z&M and ‘

(i) the complementary orthogonal distribution D' :z—D,‘cT .M
is totally real, ie, JD /AT, M for each zeM.

If dim D,t=0 (resp. dim D,=0), then the CR-submanifold is
called a holomorphic (resp. a totally real) submanifold. If dim D,=
dim T.M then the CR-submanifold is called an anti-holomorphic
submanifold or a gemeric submanifold [15]. A CR-submanifold is
called a proper CR-submanifold if it is neither holomorph1c nor totally

real.

It is easy show that T defined in (2.4) is an almost complex
structure of D, 1. e, T?X=—X for any X in D. Hence the d1mens1on

of D, for eéach z&M is even.
We denote by » the complementary orthogonal subbundle of JDt in

T+M. Then we have
3.1) TM=JD®vy, JD*+ | »
For any vector field U tangent to M and Z in D+, we have
(3.2) VyJZ=—A;;U+VHIZ.
By virtue of (1.3) and (3.2), we obtain “
(3.3) PuZ+o(U,2)=~B, ZyJU~{U, Zya+{a, ZyU+JA;;U
—JpsJZ.
From this, we get

+<{JA;2U, X5

for any vector field U tangent to M, X in D and Z in D+ In (3. 4),
if U is an element of D! (put it W), then (3.4) can be written as
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(3.5) PaZ, X)=—La,X){Z, W)+{JA;;W, X).
Thus we have
(3.6) ([W,Z],X)=<XJ(A;zW—A;w2Z), X)
where [Z, W]=p ,W—PwZ.
Next, we can easily show the following;
B.7) A;W—A;wZ={B,ZYW—{B,W)Z
for any Z and W in DY. Thus we have from (3.6) and (3.7)

PROPOSITION 3.1. Ina CR-submanifold M of anl.c. K-manifold M,
the distribution D+ is integrable.

For any vector field U tangent to M, X in D and & in v, we can
prove

<AE<]X9 U>=<ﬁ, $><Xa U>~<C¥, E><JX: U>_‘<A_15X, U>’
that is,
(3.8) ATX+ Ay X=(8, )X —{a, £)JX.

Now, we assume that the distribution D is integrable. Then for any
X and Y in D,[X, Y] is an element of D, that is, <X, Y], Z)=0
for any Z in D*. From this equation we obtain

3.9 {o(X,JY)—0(Y,JX)—-2{JX, Y)a,JZ)=0.
Conversely if (3.9) is satisfied, then it is easily seen that the

distribution D is integrable. Thus we have

PROPOSITION 3. 2. The distribution D of a CR~submanifold of an l. c.
K-manifold is integrable if and only if (3.9) is satisfied.

Let the leaf M* of the distribution D! be totally geodesic in M,
that is, pzW is an element of D* for any Z and W in D:. This
means {fzW, X)=0 for any X in D. From this, we can prove

PROPOSITION 3.3. The leaf ML of the distribution D' of a CR-
submanifold M of an 1. c. K-manifold M is totally geodesic in M if and
only if

(3.10) CAswZ+<Z, W)B, X>=0
for any X in D and Z and W in D>

Next, we shall prove
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PROPOSITION 3.4. If, in a CR-submanifold M of an I.c. K-manifold
M, the distribution D is integrable and the leaf M* of Dt is totally
geodesic in M, then we have

(3.11) A JX+JA zX—e, FZYTX+La, XDZ+LB, X YJZ=0
for any X in D and Z in D

Proof. To prove (3.11), it is sufficient that we show
CA ypJX+JA 12X — e, JZYT X+, XYZ+<B, X )JZ, D ® D*
@JID+>={0}.
By virtue of (3.9) and (8.10), we can show the above equation.

4. Covariant differentiations

Let T,f,Q and ¢ be the endomorphisms and the vector-bundle-valued
1-forms defined in (2.4) and (2.5), respectively. Let us define the
covariant differentiation of T, @, ¢ and f as follows;

4.2 (Pu@ V=rQV) —QryV,
(4.3) (Pyt)é=ry(t8) —tr s,
“9 (Puf)e=r(f&) —fris

for any vector fields U and V tangent to M and any vector field &
normal to M.

The endomorphism 7 (resp. the endomorphism f, the vector—
bundle-valued 1-forms @ or z) is parallel if FT=0 (resp. Ff=0,
7Q=0 or Ft=0).

From (1.1), (2.2) and (2.5), we can easily show

(4.5) (FPyT)V=AqeU-+ta((U, V) —<{B, VYU+LU, V)8
—{a, V)TUALTU, V)ay,

4.6) Q) V=—0o(U,TV)+{U, V>Bs—<La, VIQULTU, V)as
+___fo(U, V),

4.7 (‘ZU’)$=Aer—<13, EU—La, & TU+QU, &ay—TALU,

(4- 8) (VUf)E?‘ “U(Ua tS) ‘—<C¥, §>Q U+ <Q Us ‘§>a2_QA5U

for any vector fields U and V tangent to M and any vector field &
normal to M, where a;,8; and a,, f; are the tangential and the
normal components of @ and (3, respectively.
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5. CR-products of an 1. ¢. K-manifold

DEFINITION 5.1. A CR-submanifold M of an Ll c. K-manifold M
is called a CR-product if it is locally a Riemannian product of a
holomorphic submanifold M?! and a totally real submanifold M* of M.

In this section, our main object is to prove the following;

THEOREM 5.1. A CR-submanifold M of an 1.c. K-manifold M is a
CR-product if and only if the endomorphism T is parallel.

Proof. Let M be a CR-submanifold of an I c. K-manifold M and
T be parallel. Then we have from (4.5)

6.1 AgUtta(U, V) =<8, VYU, V) —<a, V)TU
+{TU, V)a;=0

for any vector fields U and V tangent to M. In (5.1), if the vector
field V is in D (put it X), then (5.1) is written as

(5.2) to(U,X)—<B, X>UHLU, X8, —{a, X>TU+LTU, X da;=0.
From this, we get

ta(U, X)), Z>—<B, X)U, Z)+ {8, Z)U, X)—<a, X ){TU, Z)
+<TU’ X><C(, Z>:0

for any vector field U tangent to M,X in D and Z in D*. This
equation means

(5.3) ApzX=—{B, XPZ+B, Z)X—{a, Z)JX
for any X in D and Z in D*. By virtue of (5.3), we obtain
(5.4) (AyzX, Y)=(B,Z){Y, X} —{a, Z){JX, Y)

for any X and Y in D and Z in D!. Since the second fundamental
form ¢ is symmetric, we have from (5.4) {a,Z>=0 if D+ {0}.
Taking account of (3.3), we have

JA;2X=JpxJZ+{B, Z)JX+VxZ+0(X,Z)

for any X in D and Z in D*. Thus, by virtue of (5.4) and the
above equation, we have (PxJY,Z)>=0 for any X and Y in D and
Z in D*. This means the leaf MT of D is totally geodesic in M., Of
course, we can easily see the distribution D is integrable.
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Next, we have from (5.1)
AQWZ—I—to(Z, W) “‘<18’ W>Z+<Za W>181:=:O

for any Z and W in DL, From this, we get (A;wZ-+<{Z, W)B, X>=0
for any X in D. Thus by virtue of Proposition 3.3, the leaf M* of
Dt is totally geodesic in M.

Conversely, in a CR-product of an l.c. K-manifold, it is trivial
that the endomorphism 7 is parallel.

From (5.3); we have

PROPOSITION 5. 2. A CR-submanifold M of an 1. c. K-manifold M is
a CR—-product if and only if

(5.5) Ay X=—{8, XPZ+{B, Z>X—{a, Z)JX
for any X in D and Z in D*.

Let M be a CR-product of an 1 c. K-manifold #. Let us calculate
the holomorphic bisectional curvature Hy(X,Z) for any units X in D
and Z in D', where Hp(X,Z) is defined by

(5.6) Hy(X,Z)=R(X,JX;JZ,Z).
By the straightfoward calculation, we get

(6.7 Hp(X, Z2)=2llo(X, 2) |*+2IKB, X)l2+2lKer, X)|I?
—2llelP+ <V xa, XD+ Vyxa, X ).

Let the ambient manifold 7 be an 1l c.K-space form M(H) with
constant holomorphic sectional curvature H. Then we obtain

(5.8) Hy(X,2) =5 (H+Fxa, X+ Pz, Zy—[[<a, XD|2—ljal).

Substituting (5. 8) into (5.7), we have

(5.9) H43llalP=4llo (X, Z) [2+4]|<8, X)l12+5[Ka, XD |12
+{Pxa, XD~ T pa, ZY+2(F y g, JX ).

Thus we have

PROPOSITION 5. 3. In a CR-product of an I.c. K—space form M(H),
we have (5.9).
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6. CR-submanifolds with 7Q=0
In this section, at first, we shall prove

PROPOSI_’_I‘ION 6.1. Let M be a CR-submanifold of anl. c. K-manifold
M Then VQ=0 if and only if Vt=0.
Proof. Let t be parallel. Then, by virtue of (4.7), we have
(AreU, V)=(B, XU, V)4, )XTU, V)—<QU, E)a, V)
+(TAU, V)
for any vector fields U and V tangent to M and any vector field &
normal to M. The above equation means

(U, V), f0=CU, V){B,E)+KTU, V){a, &) —<a, V){QU, &
_'<G‘(Us TV)9S>1

which is equivalent to
6.1) fo(U, V) —a(U, TV)+(U, V)B+{TU, Via,
—<La, V)QU=0,

ie, FQ=0.

Next, we shall prove

THEOREM 6.2. Let M be a CR-submanifold of an l.c. K-manifold
M. If Q is parallel, then we have

(1) the submanifold M is a CR-product,

(ii) A, D+ < DY, and

(Gii) 6(X, Z2)=—{B, X)>JZ for any X in D and Z in D*.

Proof. Let Q be parallel. Then we have (6.1). Thus, for any Z
in DY, we get

(o (V, TX),JZ)+{X, VB2 JZD+{TV, X Yas, JZ)
'—'<a’ X><QVs JZ>=O:

from which,
AJZX: —<a7 Z>JX+<.83 Z>X'—<.B’ X>Z

for any X in D and Z in D! By virtue of Proposition 5.2, the
above equation tells us that the submanifold M is a CR-product.
In (6.1), if the vector field U is in D* (put it W), then we have
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o (V, W) +<V, W)pe+{(TV, W)a,=0.
The above equation means
(fo(V, W), JE)+<V, WH<{Bs, JE»=0
for any & in v. From this, we get
6.2 AW=—(a,5)W

for any W in D and £ in ». This equation means (ii).

In (6.1), if we put U=XeD and V=ZeD!, then we obtain
fo (X, Z)=0. Moreover, in (6.1), if we put U=Z&D* and V=X&D,
then we have

—0(Z,JX) ~{a, X)JZ+fo (X, Z)=0.

Thus we have from the above two equations (iii).

Now, let M be a CR-submanifold satisfying 7Q=0 of an lc K-
space form M (H). Then, by virtue of (iii) in the above theorem,
the equation (5.9) can be written as

6.3 H+3lal?=8l<a, X)12+5lKB, XDII2+{F xor, XD
=V g, Z)+ 2P xe0, IX )

for any units X in D and Z in D*. Thus, in our submamfold M, if
dim D,>2 for each z in M, then we can take a X in D as (&, X)=
0 and <8, X)=0. Then the equation (6.3) can be written as

(6.4  H+3lalP=—{e, VxX)+{a, V2> —2a, V;xJX).
In the above equation, let us replace X by JX. Then we have
HA-3llalp=—<{a, 7y xIX)+{a, 7V 2Z)— 2 a, 7 x X).

By virtue of the above equation and (6.4), we have

(6.5) o, Vx X =La, P33T X).
Thus we have
(6.6) H+3llalP=—3{a, 7xX)+{a,V;Z)

for any units X in D such that {a, X)=0 and Z in DL. Thus we have

THEOREM 6. 3. In a CR-submanifold M with VQ=0 of an l.c. K-
space form M (), if there are two vector fields X in D and Z in D+
satisfying the conditions; (i) {a,X)=0, VxX=0, @) VzZ=0, then
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the length |la|| of the Lee form a is constant and the holomorphic
sectional curvature H is non—positive.

7. Mixed foliate CR-submanifolds

DEFINITION 7.1. A CR-submanifold M of an 1l c. K-manifold M
is sald to be mized foliate if

(i) the distribution D is integrable and

(ii) o(D, DY) = {0}.

For a mixed foliate CR-submanifold of an 1. c¢. K~manifold we shall
prove the following;

PROPOSITION 7.1. Let M be a mized foliate CR-submanifold of an
. ¢. K-manifold M. Then for any units X in Dand Z in D* we have

(7.1 Hp(X, Z) —2{B, Z)2=—|A; s X|I2— |4, 2J X ||Z
Proof. If M is a mixed foliate CR-submanifold, then we have

(7.2 o(D, DY = {0}, [D,D]cD and (¢(X,JY)—0a(Y,JX)
—2{JX, Yya,JZ)=0

for any X and Y in D and any Z in D!. By the equation of Codazzi
and (2.6), we have

Hpy(X,Z)=—R(X,JX;2,JZ)={a(WxJX,Z) +6(JX, P xZ)
_"O'(VJXX; Z) _U(X: VJXZ)s JZ>

for any units X in D and Z in D+
On the other hand, since

CoWxIX,Z) —o(WyxX, 2), JZ)={ A1V xJX — Ay 7V 3xX, Z)
=<AJZ[X’ JX], Z>:<U(EX’ JX:L Z’ JZ>=O by (7° 2)1;2,

we have

(7.3) Hy(X,Z)={0(UX,VxZ) —0(X, VyxZ),JZ)
=(Ay X, VxZ)—{A;:X, VixZ).

Substituting (3.3) into (7.3), we get

(7. 4) Hy(X,Z)=—{B, Z) {A;2JX, JX)+(4;.X, X)}
+<a, Z> {<AJZ¢]X, X>_‘<AJ2X, JX>} ““2<AJ2X, JAJ2JX>.

Furthermore, by virtue of (7.2), we obtain
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(7.5)  Hp(X,Z)=—2{8,2)*—2||A; JX|P—4IX, A; s )X, JZ}.
Since Hy(X,Z)=Hgz(JX,Z), we have from (7.5)

(7.6) Hp(X,Z)=—2{B, Z)*—2[|A; 2 X|P+4X, A;2X)<B, Z).
By virtue of {A;zJX,JX)=—{A4;:X,X)—2ea,JZ), (7.5) can be
written as

Hy(X,Z)=6{8, Z)2— 2|4 ;2T X|P+4{A;2X, X ){e, JZ).

We have from (7.6) and the above equation

(7.7 KAszX, X){B, Z)=—Hp(X, Z) +6{8, Z)*— 2| A; zJX[I2

Substituting (7.7) into (7.6), we have (7.1). -
If an 1. c. K-manifold is an 1 c. K-space form M (H), then we
have

(7.8)  Hy(X,2) =5 (H-Ia, |~ Ka, Z)]— el
+V xa, X+ LV 20, Z)).
Thus we have from (7.1) and (7.8)

COROLLARY 7.2. Let M(H) be an . c. K-space form and M be a
mized foliate submanifold of M (H). Then we have

(7.9 H-|a, X312~ e, Z)|12—|lal[2+ P xa, X>
+V 2, Z) — 418, Z)|P= —2l|AszX |2 21| A, 2T X |2

for any units X in D and Z in DL
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