JORDAN AUTOMORPHISMS ON DIRECT SUMS OF SIMPLE RINGS

R.A. HEEG

1. Introduction

Suppose R is a direct sum of K simple rings and G is a group of automorphisms of R of finite order, |G|. If R has no |G|-torsion (i. e. |G|r=0 implies r=0 for all $r\in R$) then Osterburg has shown in [6] that the fixed ring of R under G is a direct sum of at most |G|K simple rings. We shall prove the analogous result when G consists of Jordan automorphisms of R.

2. Preliminaries

Let R and S be rings and T an additive map of R into S. Then T is called a Jordan homomorphism if (i) $(x^2)^T = (x^T)^2$ and (ii) $(xyx)^T = x^Ty^Tx^T$ for all x, y in R. Any additive map satisfying (i) necessarily satisfies (i') $(xy+yx)^T = x^Ty^T + y^Tx^T$ and if S has no 2-torsion (i. e. 2s=0 implies s=0 for every $s \in S$) then additivity and (i') imply both (i) and (ii) [c. f. Herstein: Topics in Ring Theory]. As can be readily verified, any Jordan homomorphism T also satisfies $(xyz+zyx)^T = x^Ty^Tz^T + z^Ty^Tx^T$ as well as $[x,[y,z]]^T = [x^T,[y^T,z^T]]$ where [a,b] = ab-ba.

Clearly every (associative) homomorphism or anti-homomorphism is a Jordan homomorphism and conversely we have

THEOREM 1. (Herstein [1]) Every Jordan homomorphism onto a prime ring is either a homorphism or anti-homomorphism.

As a corollary we have

COROLLARY 2. (Martindale-Montgomery [4]) Let T be a Jordan isomorphism from R onto S and let P be a prime ideal of R. Then the image of P under T (denoted P^T) is a prime ideal of S and R/P.

 S/P^T are either isomorphic or anti-isomorphic.

Suppose R is a non-commutative ring with involution *. Define $\tau: R \to R \oplus R$ by $r^r = (r, r^*)$. Then τ is a Jordan monomorphism (i. e. τ is a one-to-one Jordan homomorphism) whose image is not a subring of $R \oplus R$. Similarly, there are Jordan homomorphisms whose kernels are not (associative) ideals. This prompts the following definitions.

An additive subgroup A of an associative ring R is called a (special) Jordan ring if a^2 , aba are in A whenever $a, b \in A$.

An additive subgroup I of a Jordan ring A is called a (quadratic) Jordan ideal if x^2 , xax, axa, xa+ax are in I whenever $x \in I$ and $a \in A$. We write $I \subseteq_I A$.

Every associative ring is a Jordan ring and every ideal of an associative ring is a Jordan ideal. The image of a Jordan homomorphism is a Jordan ring and the kernel of a Jordan homomorphism is a Jordan ideal. Also, the image of a Jordan ideal under a Jordan homomorphism is a Jordan ideal of the image of the Jordan homomorphism.

In [3], McCrimmon has shown that every non-zero Jordan ideal of a semiprime ring contains a nonzero (associative) ideal. Using this fact and Corollary 2, we can characterize Jordan automorphisms on direct products of prime rings. But first we give some examples.

EXAMPLE 1. Let R be a commutative ring and $\operatorname{Mat}_n(R)$ denote the $n \times n$ matrices over R. Then the map $M \to M^r$ which takes each matrix to its transpose is an involution and hence a Jordan automorphism.

EXAMPLE 2. Let R be a non-commutative simple ring with involution*. Define $\tau: R \oplus R \to R \oplus R$ by $\tau(a, b) = (a^*, b)$. Then τ is a Jordan automorphism (of order 2) on a direct sum of simple rings which is neither an automorphism nor anti-antomorphism.

EXAMPLE 3. Let R, * be as in example 2. Define $\tau : R \oplus R \to R \oplus R$ by $\tau(a, b) = (b, a^*)$. Then τ , is a Jordan automorphism of order 4.

EXAMPLE 4. Let R, * be as in example 2. Let p be a prime greater than 2. Let $S=R_1\oplus R_2\oplus ...\oplus R_p$ each $R_i=R$. Define $\tau_p:S\to S$ by τ_p $(r_1,r_2,...,r_p)=(r_2^*,r_3^*,...,r_p^*,r_1)$; then τ_p is a Jordan automorphism of order p.

We note that in examples 2, 3, 4 we can replace R with any ring and * with any Jordan automorphism on R in order to obtain a Jordan

automorphism. The following theorem shows that these are the only Jordan automorphisms on direct products of prime rings.

THEOREM 3. Let $R = \prod_{\alpha \in \Lambda} S_{\alpha}$ where each S_{α} is a prime ring and let g be a Jordan automorphism on R. Then for each $\beta \in \Lambda$, there is $\gamma \in \Lambda$ so that $S_{\beta}{}^{g} = S_{\gamma}$ and the restriction of g to S_{β} is either an automorphism or anti-automorphism.

Proof. S_{β} is the intersection of the prime ideals of R which contain S_{β} . Therefore the image of S_{β} under g is an intersection of prime ideals of R by Corollary 2. In particular, S_{β}^{g} is an associative ideal of R.

Let $K \subseteq \Lambda$ such that S_{β}^{g} contains an element which has a non-zero entry in S_{l} if and only if $l \in K$.

Suppose $l \in K$ and $s \in S_l$ such that s appears in the l^{th} component of an element of S_{β}^{g} with $s \neq 0$. Since S_{β}^{g} is an ideal of R, $S_{\beta}^{g}S_{l} \subseteq S_{\beta}^{g}$. Consequently $sS_{l} \subseteq S_{\beta}^{g}$. Likewise $S_{l}s \subseteq S_{\beta}^{g}$ and $xsy \in S_{\beta}^{g}$ for all $x, y \in S_{l}$. Therefore S_{β}^{g} contains an ideal of S_{l} , which is non-zero by the primeness of S_{l} .

So for each $l \in K$ there is a nonzero ideal I_l of S_l such that $S_{\beta}^{\mathbf{z}} \supseteq \prod_{l \in K} I_l$.

We now show that K contains exactly one element. Suppose $l, l' \in K$, $l \neq l'$. Then $I_l \cap I_{l'} = 0$. Thus $0 = g^{-1}(I_l \cap I_{l'}) = g^{-1}(I_l) \cap g^{-1}(I_{l'})$. But $g^{-1}(I_l)$, $g^{-1}(I_{l'})$ are nonzero Jordan ideals of S_β . By McCrimmon's result there are nonzero ideals A and B of S_β with $A \subseteq g^{-1}(I)$ and $B \subseteq g^{-1}(I_{l'})$. But this forces $A \cap B = 0$ which contradicts the primeness of S_β . Thus K contains exactly one element. This implies that there is a $\gamma \in \Lambda$ such that $S_\beta{}^g \subseteq S_\gamma$.

Applying the same argument to S_{τ} and g^{-1} , we get $S_{\tau}^{g^{-1}} \subseteq S_{\delta}$ where $\delta \in \Lambda$. But this implies that $S_{\tau} \subseteq S_{\delta}^{g}$ and so $S_{\beta}^{g} \subseteq S_{\tau} \subseteq S_{\delta}^{g}$ which gives $S_{\beta} \subseteq S_{\delta}$ forcing $\beta = \delta$. Consequently $S_{\beta}^{g} = S_{\tau}$.

The last statement of the theorem is a consequence of Theorem 1. If R is a ring and G is a group of Jordan automorphisms of R, then the fixed ring of R under G is $\{r \in R \mid r^g = r \text{ for every } g \in G\}$ and is denoted R^G . If g is an element of any group, then $\langle g \rangle$ denotes the subgroup generated by g. In particular, if I is a subring of R which is g-invariant (i. e. $I^g = I$) then I^{g} denotes the set of elements of I which are fixed by g.

Finally, two note another consequence of Theorem 1 which appears in [4]. Namely, if R is a prime ring, G is a group of Jordan automorphisms of R, and H is the subgroup of G consisting of (associative) automorphisms of R, then the index of H in G is either one or two. In either case, H is normal in G. If $H \neq G$ then G/H acts as involution on R^H .

3. Main Theorem

In this section we consider the action of a finite group of Jordan automorphisms on a ring which is a direct sum of simple rings. Our main result (Theorem 11) extends theorems of both Osterburg [6] and Sundstrom [7]. We start with the result in [6].

THEOREM 4 [Osterburg]. Let R be a ring which is the direct sum of k simple rings and G a finite group of automorphisms of R such that R has no |G|-torsion. Then the fixed ring of R is a direct sum of l simple rings where $l \le k|G|$.

For involutions, we have the following result proved in $\lceil 1 \rceil$.

THEOREM 5. If R is a simple ring of characteristic not 2 and g is an involution on R, then the fixed ring of R is a simple Jordan ring.

A simple Jordan ring is a Jordan ring which has no nonzero proper Jordan ideals. Since every associative ideal is a Jordan ideal, any associative ring which is a simple Jordan ring is a simple ring. Conversely, if R is a simple ring then R is a simple Jordan ring. For if R has a nontrivial proper Jordan ideal, A, then by McCrimmon's result R contains a nonzero associative ideal contained in A. which contradicts the simplicity of R.

In [7], Sundstrom considers the situation when G is a finite solvable group consisting of automorphisms or anti-automorphisms, acting on a direct sum of simple rings which has no |G|-torsion. The subgroup of automorphisms of G is a normal subgroup, H, of index 2 with G/H acting on R^H as an involution. In general, when G is a finite solvable group of Jordan automorphisms on a direct sum of simple rings, the subgroup of automorphisms is not necessarily of index 2 in G. In example 3, τ is a Jordan automorphism of order 4 and the only automorphism in $\langle \tau \rangle$ is the identity. When G is not solvable, the subgroup of automorphisms is not necessarily normal as the next

example illustrates.

EXAMPLE 5. Let R be a simple non-commutative ring with involution *. Let $S=R\oplus R\oplus R$ and $G=\langle \tau,\rho\rangle$ where $\tau(a,b,c)=(a,c^*,b)$ and $\rho(a,b,c)=(c,a,b)$ then $\tau\rho\tau^{-1}(a,b,c)=(b^*,c^*,a)$ so $\tau\rho\tau^{-1}$ is not an automorphism and hence the subgroup of automorphisms of G is not normal.

Nevertheless, by using Theorems 3, 4, and 5, we can prove analogous results for Jordan automorphisms.

We start with

LEMMA 6. Suppose $R = \sum_{i=0}^{n-1} \bigoplus S_i$ and g is a Jordan automorphism of R such that

(i) g^n is the identity and

(ii) $S_i{}^g = S_{i+1 \pmod{n}}$

Then the fixed ring of R is Jordan isomorphic to So.

Proof. If $s \in S_0$ then $s \oplus s^g \oplus s^{g^2} \oplus ... \oplus s^{g^{n-1}}$ is fixed by g. Conversely, if $r \in R$ is fixed by g then r is of the form $s \oplus s^g \oplus s^{g^2} \oplus ... \oplus s^{g^{n-1}}$ where $s \in S_0$. So $R^{\langle g \rangle} = \{s \oplus s^g \oplus s^{g^2} \oplus ... \oplus s^{g^{n-1}} | s \in S_0\}$. The map from S_0 to $R^{\langle g \rangle}$ given by $s \to s \oplus s^g \oplus s^{g^2} \oplus ... \oplus s^{g^{n-1}}$ is a Jordan isomorphism.

We generalize the result in

LEMMA 7. Suppose R is a ring and g is a Jordan automorphism such that $R = \sum_{i=0}^{n-1} \bigoplus I^{g^i}$. Then the fixed ring of R is Jordan isomorphic to the fixed ring of I under $\langle g^n \rangle$.

Proof. Clearly, each I^{gi} is g^n -invariant so

$$R^{\langle g^n \rangle} = (\sum_{i=0}^{n-1} \bigoplus I^{g^i})^{\langle g^n \rangle} = \sum_{i=0}^{n-1} \bigoplus (I^{g^i})^{\langle g^n \rangle}$$

By letting $S_i = (I^{g^i})^{\langle g^n \rangle}$ and g' be a generator of $\langle g \rangle / \langle g^n \rangle$ we can apply Lemma 6 to $\sum_{i=0}^{n-1} \bigoplus S_i$ and g' to obtain

$$(\sum_{i=0}^{n-1} \bigoplus (I^{g^i})^{\langle g^n \rangle})^{\langle g \rangle})^{\langle g^n \rangle} = (\sum_{i=0}^{n-1} \bigoplus S_i)^{\langle g^n \rangle} \cong S_0 = I^{\langle g^n \rangle}$$

$$(\sum_{i=0}^{n-1} \bigoplus (I^{g^i})^{\langle g^n \rangle})^{\langle g \rangle})^{\langle g^n \rangle} = (R^{\langle g^n \rangle})^{\langle g^n \rangle} = R^{\langle g \rangle}$$

So $R^{\langle g \rangle} \cong {}_{1}l^{\langle g^{n} \rangle}$.

But

We now prove

THEOREM 8. Let R be a simple ring and G a finite group of Jordan automorphisms of R. If R has no |G|-torsion, then the fixed ring of R is a direct sum of at most |G| simple Jordan rings. If, in addition, G does not consist solely of automorphisms then the fixed ring of R is a direct sum of at most |G|/2 simple Jordan rings.

Proof. Let $H = \{g \in G \mid g \text{ is an automorphism of } R\}$. If H = G, then by Theorem 4 we are done.

We now assume $H \neq G$. Then the index of H in G is equal to 2 and G/H acts as involution of R^H . By Theorem 4, R^H is a direct sum of at most |H| simple rings; so suppose $R^H = \sum_{i=1}^n \bigoplus S_i$ where each S_i is a simple ring and $n \leq |H|$.

We first consider the case when S_1 is G/H-invariant. Either the action of G/H on S_1 is that of the identity or that of an involution. In either case, $S_1^{G/H}$ is a simple Jordan ring.

Now suppose S_1 is not G/H invariant. Then by Theorem 3, there is an $l \le n$ that the image of S_1 under the non-identity element of G/H is S_l . In this case G/H acts on $S_1 \oplus S_l$ and by Lemma 6, $(S_1 \oplus S_l)^{G/H} \cong_J S_1$. Continuing, we see that $R^G = (R^H)^{G/H}$ is a direct sum of at most |H| = |G|/2 simple Jordan rings.

We now investigate the situation when R is a direct sum of simple rings, proving first a result about associative automorphisms.

LEMMA 9. Let $R=S_1 \oplus S_2$ where S_1 , S_2 are simple rings and let G be a finite group of automorphisms of R. If R has no |G|/2 torsion and S_1 is not G-invariant, then the fixed ring of R is a direct sum of at most |G|/2 simple rings.

Proof. Let $K = \{g \in G \mid S_1^g = S_1\}$. Then K is normal in G and has index 2. Consequently,

$$R^{G} = (R^{K})^{G/K} = ((S_{1} \oplus S_{2})^{K})^{G/K} = (S_{1}^{K} \oplus S_{2}^{K})^{G/K}$$

with is isomorphic to S_1^K by Lemma 6. And by Theorem 4, S_1^K is a direct sum of at most |K| simple rings.

Therefore, R^G is a direct sum of at most |G|/2 simple rings. We now extend this Lemma by allowing Jordan automorphisms.

THEOREM 10. Let $R=S_1 \oplus S_2$ where S_1, S_2 are simple rings and let G be a finite group of Jordan automorphisms of R such that R has no |G|-torsion.

- (i) If G does not consist solely of automorphisms, then the fixed ring is a direct sum of at most 3|G|/2 simple Jordan rings.
- (ii) If S_1 is not G-invariant, then the fixed ring is a direct sum of at most |G|/2 simple Jordan rings.
- (iii) If the hypotheses of (i) and (ii) are both satisfied and $\{g \in G | S_1^g = S_1\} \neq \{g \in G | g \text{ is an automorphism}\}$, then the fixed ring is a direct sum of at most |G|/4 simple Jordan rings.

Proof. Let $K = \{g \in G | S_1^g = S_1\}$ and Let $H = \{g \in G | g \text{ is an automorphism of } R.\}$ We first prove:

- (ii) Suppose S_1 is not G-invariant. Then the index of K in G is equal to 2. As in the proof of Lemma 9, $R^G \cong_J S_1^K$ and by Theorem 8, S_1^K is a direct sum of at most |K| = |G|/2 simple Jordan rings.
- (i) We may assume that S_1 is G-invariant. Otherwise, we can apply part (ii). Since G does not consist solely of automorphisms, its action on either S_1 or S_2 is not that of associative automorphisms. Therefore the fixed ring of either S_1 or S_2 is a direct sum of at most |G|/2 simple Jordan rings by Theorem 8. The fixed ring of the other summand is a direct sum of at most |G| simple Jordan rings also by Theorem 8. Therefore R^G is a direct sum of at most |G|/2+|G|=3|G|/2 simple Jordan rings.
- (iii) As in the proof of Lemma 9, $R^G \cong_J S_1^K$ (or, equivalently, $R^G \cong_J S_2^K$). If the action of K on both S_1 and S_2 is that of automorphisms then $K \subseteq H$. But the index of K in G is equal to 2. So either K = H or H = G. But, by hypothesis, neither of these can happen. Consequently, we may assume that K does not act as automorphism on S_1 . By applying Theorem 8, S_1^K is a direct sum of at most |K|/2 simple Jordan rings. That is, R^G is a direct sum of at most |K|/2 = |G|/4 simple Jordan rings.

We remark that when S_1 is not G-invariant, we need only require that R has no |G|/2 torsion.

As a final result we prove:

THEOREM 11. Let R be a direct sum of K simple rings and G a finite group of Jordan automorphism of R such that R has no |G|-torsion. Then the fixed ring is a direct sum of at most K|G| simple

Jordan rings. This bound can be achieved only when each summand of R is G-invariant and G consists solely of automorphisms of R.

Proof. Let $R = \sum_{i=1}^{K} \bigoplus S_i$. If each S_i is G-invariant then we can apply Theorem 8 to conclude that R^G is a direct sum of at most K|G| simple Jordan rings. If, in addition, G does not consist solely of automorphisms, then the action of G on some S_I does not act as automorphisms. Consequently, S_I^G is a direct sum of at most |G|/2 simple rings. Therefore R^G is a direct sum of at most (K-1)|G|+|G|/2 < K|G| simple Jordan rings.

Now assume that some S_l is not G-invariant and let $\operatorname{Orbit}(S_l) = \{S_l^{g} | g \in G\}$. We will show that if R' is the direct sum of the distinct elements of Orbit (S_l) then the fixed ring R' under G is a direct sum of at most |G|/n simple Jordan rings where $n = |\operatorname{Orbit}(S_l)|$.

Let $H = \{g \in G | S_l^g = S_l\}$ and let $g_0, g_1, ..., g_{n-1}$ be distinct representatives of the right cosets of h in G (where g_0 is the identity) then $R' = S_l^g \circ \bigoplus S_l^g \circ \bigoplus ... \bigoplus S_l^g \circ \multimap = 1$ and n = [G : H].

We claim that $(R')^G = \{s+s^{g_1}+...+s^{g_{n-1}}|s\in S_l^H\}$. Clearly any element of $(R')^G$ is of the form $s+s^{g_1}+...+s^{g_{n-1}}$ where $s\in S^H$. Now let $g\in G$. Then $(s+s^{g_1}+...+s^{g_{n-1}})^g=s^g+s^{g_1}g+...+s^{g_{n-1}}g$. But there is a $h\in H$ and $g_{i_0}(0\leq i_0\leq n-1)$ so that $g=hg_{i_0}$. Consequently, $s^g=s^{hg_{i_0}}=s^{g_{i_0}}$. Similarly, there is $h'\in H$ and g_{i_1} $(0\leq i_1\leq n-1)$ so that $g_1g=h'g_{i_1}$. Therefore $s^{g_1g}=s^{h'g_{i_1}}=s^{g_{i_1}}$ Continuing, we see that the action of $g\in G$ simply permutes the elements of $s+s^{g_1}+...+s^{g_{n-1}}$. We need only show that $\{g_{i_0},g_{i_1},...,g_{i_{n-1}}\}$ are distinct representatives of the right cosets of H in G.

Suppose $g_{i\alpha}$ and $g_{i\beta}$ are in the same right coset. Then there is a $g_j(0 \le j \le n-1)$ and $h_1, h_2 \in H$ so that $g_{i\alpha} = h_1 g_j$ and $g_{i\beta} = h_2 g_j$. From before, there exists h', h'' so that $g_{\alpha}g = h'g_{i\alpha}$ and $g_{\beta}g = h''g_i$ where g_{α}, g_{β} are distinct in $\{g_0, g_1, ..., g_{n-1}\}$. Consequently, $g_{\alpha}g = h'g_{i\alpha} = h'h_1 g_j$ and $g_{\beta}g = h''g_{i\beta}g_j$. That is, $g_{\alpha} = h'h_1 g_j g^{-1}$ and $g_{\beta} = h''h_2 g_j g^{-1}$ which puts g_{α} and g_{β} in the same right coset of H in G, a contradiction.

Thus, $\{g_{i_0}, g_{i_1}, ..., g_{i_{n-1}}\}$ are distinct representatives of the right cosets of H in G.

We have shown that

$$(R')^G = \{s + s^{g_1} + ... + s^{g_{n-1}} | s \in S^H \}.$$

But the mapping of S_l^H onto $(R')^G$ given by $s \rightarrow s + s^{g_1} + ... + s^{g_{n-1}}$ is a

Jordan isomorphism. That is, $(R')^G \cong_J S_l^H$. But by Theorem 8, S_l^H is a direct sum of at most |H| = |G|/n simple Jordan rings. This completes the proof.

References

- 1. I. N. Herstein, Topics in Ring Theory, U. of Chicago Lecture Notes, 1965.
- 2. N. Jacobson, Structure and Representations of Jordan Algebras, Amer. Math. Soc. Colloquium Publ. 39 (1968), Providence.
- 3. K. McCrimmon, On Herstein's theorems relating Jordan and associative algebras, J. of Algebra 13 (1969), 382-392.
- 4. W.S. Martindale, III and S. Montgomery, Fixed elements of Jordan automorphisms, Pacific J. Math. 72 (1977), 181-196.
- 5. S. Montgomery, Fixed Rings of Finite Automorphism Group of Associative Rings, Lecture Notes in Mathematics 818, Springer-Verlag, 1980.
- 6. J. Osterburg, The Influence of the Algbra of the Group, Comm. in Alg. 7 (13) (1979), 1377-1396.
- 7. T.A. Sundstrom, Groups of automorphisms of simple rings, J. of Algebra 29 (1974), 555-566.

Northern Illinois University Dekalb, Illinois 60115 U. S. A.