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JORDAN AUTOMORPHISMS ON DIRECT SUMS OF
SIMPLE RINGS

R.A. HEEG

1. Introduction

Suppose R is a direct sum of K simple rings and G is a group of
automorphisms of R of finite order, |G|. If R has no |G]-torsion
(i.e. |Glr=0 implies r=0 for all r&R) then Osterburg has shown
in [6] that the fixed ring of R under G is a direct sum of at most
|GIK simple rings. We shall prove the analogous result when G
consists of Jordan automorphisms of R.

2. Preliminaries

Let R and S be rings and 7 an additive map of R into S. Then
T is called a Jordan homomorphism if (i) (22)T=(27T)? and (ii)
(xyz)T=xTyTzT for all z,y in R. Any additive map satisfying (i)
necessarily satisfies (i’) (zy+yz)T=a2TyT+yT2zT and if S has no 2-
torsion (i.e. 2s=0 implies s=0 for every s&§) then additivity and
(i") imply both (i) and (ii) [c.f. Herstein: Topics in Ring Theory].
As can be readily verified, any Jordan homomorphism T also satisfies
(zyz+zyx)T=2TyT2T+2TyTzT as well as [z, [y, 2]]7=[2T, [y7,2T]]
where [a, b]=ab—ba.

Clearly every (associative) homomorphism or anti-homomorphism is
a Jordan homomorphism and conversely we have

THEOREM 1. (Herstein [1]) Every Jordan homomorphism onto a prime
ring is either a homorphism or anti—homomorphism.

As a corollary we have

COROLLARY 2. (Martindale-Montgomery [4]) Let T be a Jordan
isomorphism from R onto S and let P be a prime ideal of R. Then the
image of P under T (denoted PT) is a prime ideal of S and R/P,
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S/PT are either isomorphic or anti—isomorphic.

Suppose R is a non-commutative ring with involution *. Define
7 : R>R®PR by r*=(r,r*). Then 7 is a Jordan monomorphism (i. e.
7 is a one-to-one Jordan homomorphism) whose image is not a subring
of ROR. Similarly, there are Jordan homomorphisms whose kernels
are not (associative) ideals. This prompts the following definitions.

An additive subgroup A of an associative ring R is called a (special)
Jordan ring if a2, aba are in A whenever q, b€ 4. 7

An additive subgroup I of a Jordan ring A is called a (quadratic)
Jordan ideal if x%, xaz, axa, za+axr are in I whenever x&l and
acA. We write IS, A.

Every associative ring is a Jordan ring and every ideal of an associa-
tive ring is a Jordan ideal. The image of a Jordan homomorphism is
a Jordan ring and the kernel of a Jordan homomorphism is a Jordan
ideal. Also, the image of a Jordan ideal under a Jordan homomorphism
is a Jordan ideal of the image of the Jordan homomorphism.

In [3], McCrimmon has shown that every non-zero Jordan ideal
of a semiprime ring contains a nonzero (associative) ideal. Using this
fact and Corollary 2, we can characterize Jordan automorphisms on
direct products of prime rings. But first we.give some examples,

ExXAMPIE 1. Let R be a commutative ring and Mat,(R) denote the
nXn matrices over R. Then the map M— M~ which takes each matrix
to its transpose is an involution and hence a Jordan automorphism.

ExaMpLE 2. Let R be a non—commutative simple ring with involu-
tion*, Define ¢ : ROR—RDR by 7(a, b)=(a*, 4). Then = is a Jordan
automorphism (of order 2) on a direct sum of simple rings which is
neither an automorphism nor anti-antomorphism.

EXAMPLE 3. Let R, * be as in example 2. Define 7 : ROR—RPR
by z(a,b)=(b,a*). Then 7, is a Jordan automorphism of order 4.

EXAMPLE 4. Let R, * be as in example 2. Let p be a prime greater
than 2. Let S=R,®R,®. ..@Rp each R;=R. Define 7, : §$—8 by 7,
(ry, 7y ...y 15) =(rs* rs* ..., 7,* 71); then r, is a Jordan automorphism
of order p.

We note that in examples2, 3,4 we can replace R with any ring
and * with any’ Jordan® automorphism on R in order to obtain a Jordan
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automorphism. The following theorem shows that these are the only
Jordan automorphisms on direct products of prime rings.

THEOREM 3. Let R=1]] S, where each S, is a prime ring and let g

acsA
be a Jordan automorphism on R. Then for each SE A, there is yEA so
that Sgf=S, and the restriction of g to S, is either an automorphism
or anti—automorphism.

Proof. S is the intersection of the prime ideals of R which contain
Ss. Therefore the image of S; under g is an intersection of prime
ideals of R by Corollary 2. In particular, Ss° is an associative ideal
of R.

Let K< A such that Sg# contains an element which has a non-zero
entry in S; if and only if I€K.

Suppose /K and s&8; such that s appears in the /** component of
an element of S,f with s#0. Since S is an ideal of R, Sz58,SS,".
Consequently sS;,<3,% Likewise S;s©S,% and zsy€ S for all z,y&
S;. Therefore S4f contains an ideal of §;, which is non-zero by the
primeness of S;.

So for each I €K there is a nonzero ideal I, of §; such that §,f
201 I.

lek

We now show that K contains exactly one element. Suppose Z,1
eK, I1+U. Then LNIy;=0. Thus 0=g'(;N1I;) =g 1(I)) Ng~1(1}).
But g71(J;), g~ (1) are nonzero Jordan ideals of S; By McCrimmon’s
result there are nonzero ideals A and B of S5 with A<g™(J) and
BC g 1(I;). But this forces AN B=0 which contradicts the primeness
of S5 Thus K contains exactly one element. This implies that there
is a 74 such that S£CS,.

Applying the same argument to S, and g~!, we get §,57'SS; where
s A. But this implies that S, 8;f and so S#CS,S8;% which gives
8,8 forcing f=0. Consequently S5=S,.

The last statement of the theorem 1is a consequence of Theorem 1.

If Ris aring and G is a group of Jordan automorphisms of R,
then the fixed ring of R under G is {reR|rf=r for every g&G}

and is denoted RCG., If g is an element of any group, then {(g) denotes
the subgroup generated by g. In particular, if I is a subring of R
which is g-invariant (i.e. If=I) then I<®> denotes the set of elements
of I which are fixed by g.
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Finally, §we note another consequence of Theorem 1 which appears
in [4]. Namely, if R is a prime ring, G is a group of Jordan
automorphisms of R, and H is the subgroup of G consisting of
(associative) automorphisms of R, then the index of H in G is either
one or two. In either case, H is normal in G. If H+#G then G/H

acts as involution on RE, .

3. Main Theorem

In this section we consider the action of a finite group of Jordan
automorphisms on a ring which is a direct sum of simple rings. Our
main result (Theorem 11) extends theorems of both Osterburg [6] and
Sundstrom [7]. We start with the result in [6].

THEOREM 4 [Osterburg]. Let R be a ring which is the direct sum of
k simple rings and G a finite group of automorphisms of R such that
R has no |G|-torsion. Then the fixed ring of R is a direct sum of [
simple rings where I<k|G]|.

For involutions, we have the following result proved in [17.

THEOREM 5. If R is a simple ring of characteristic not 2 and g is
an involution on R, then the fixed ring of R is a simple Jordan ring.

A simple Jordan ring is a Jordan ring which has no nonzero proper
Jordan ideals. Since every associative ideal is a Jordan ideal, any
associative ring which is a simple Jordan ring is a simple ring.
Conversely, if R is a simple ring then R is a simple Jordan ring.
For if R has a nontrivial proper Jordan ideal, 4, then by McCrimmon’s
result R contains a nonzero associative ideal contained in A. which
contradicts the simplicity of R.

In [71, Sundstrom considers the situation when G is a finite solvable
group consisting of automorphisms or anti-automorphisms, acting on a
direct sum of simple rings which has no |G|-torsion. The subgroup
of automorphisms of G is a normal subgroup, H, of index 2 with G/H
acting on R¥ as an involution. In general, when G is a finite
solvable group of Jordan automorphisms on a direct sum of simple
rings, the subgroup of automorphisms is not necessarily of index 2 in
G. In example 3, ¢ is a Jordan automorphism of order 4 and the
only automorphism in {z) is the identity. When G is not solvable,
the subgroup of automorphisms is not necessarily normal as the next
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example illustrates,

EXAMPLE 5. Let R be a simple non—-commutative ring with involution
* Let S=R@®RDR and G={z, p) where 7(a, b, ¢) = (a, c*,b) and p(a,
b, c)={c, a,b) then tpr1(a,b,c)=(b* c* a) so 7pr™! is not an auto-
morphism and hence the subgroup of automorphisms of G is not normal.

Nevertheless, by using Theorems 3, 4, and 5, we can prove analogous

results for Jordan automorphisms.
We start with

n—1
LEMMA 6. Suppose R=Y, @ S; and g is a Jordan automorphism of
i=0
R such that

(i) g* is the identity
and
(ii) S¥=8it1(mod

Then the fixed ring of R is Jordan isomorphic to Sy

Proof. If s€8, then s®s*@®s*D...@s*""" is fixed by g. Conversely,
if &R is fixed by g then r is of the form s@s*@s5*D...Ds*" " where
s€8p. So R<® = {DsFDs#°D...®s*" *|s€8;}. The map from S, to
R<® given by s—s@s*@Ps&’®...®s*" ! is a Jordan isomorphism.

We generalize the result in

LEMMA 7. Suppose R is a ring and g is a Jordan automorphism such
that R=§:@I"’. Then the fized ring of R is Jordan isomorphic to
the fized ring of I under {g*).

Proof. Clearly, each I® is g"invariant so

R (Hore o S 1)+
By letting S;= (I¥")<¢™ and g’ be a generator of (g)/{g"> we can
apply Lemma 6 to :Z;}:@S,- and g’ to obtain

(El@ (Ig") <E">Y <8>/ <& ("i@si) &> =g <8
i=0 =0
But (B@ ey e/ e = (o) e/ a> —R<e>
=

So R8> = ;1"
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We now prove

THEOREM 8. Let R be a simple ring and G a finite group of Jordan
automorphisms of R. If R has no |G|—torsion, then the fixed ring of
R is a direct sum of at most |G| simple Jordan rings. If, in addition,
G does not consist solely of automorphisms then the fixed ring of R is
a direct sum of at most |G}/2 simple Jordan rings.

Proof. Let H= {g=G|g is an automorphism of R}. If H=G, then
by Theorem 4 we are done.

We now assume H+#G. Then the index of H in G is equal to 2
and G/H acts as involution of R¥, By Theorem 4, R¥ is a direct sum

of at most |H| simple rings; so suppose RH =5:"1®S" where each S;

is a simple ring and #<|H].

We first consider the case when S; is G/H-invariant. Either the
action of G/H on S; is that of the identity or that of an involution.
In either case, $;5/# is a simple Jordan ring.

Now suppose S; is not G/H invariant. Then by Theorem 3, there
is an /< that the image of S; under the non-identity element of
G/H is S;. In this case G/H acts on S;@®S; and by Lemma 6,
($1®S;) ¢/ H=; §;,. Continuing, we see that R6=(RH)G/H ig a direct
sum of at most |H|==|G]/2 slmple Jordan rings.

We now investigate the situation when R is a direct sum of simple
rings, proving first a result about associative automorphisms.

LEMMA 9. Let R=8,DS, where S1, S, are simple rings and let G be
a finite group of automorphisms of R. If R has no |G|/2 torsion and
Sy is not G-invariant, then the fized ring of R is a direct sum of at
most |G| /2 simple rings.

Proof. Let K= {g=G|S:#=S;}. Then K is normal in G and has
index 2. Consequently,

RG= (RK)G/K=((S]_®S2)K)G/K= (S1K®SZK G/ K

with is isomorphic to S;X by Lemma 6. And by Theorem 4, S;X is
a direct sum of at most | K| simple rings.

Therefore, RS is a direct sum of at most |G]/2 simple rings.

We now extend this Lemma by allowing Jordan automorphisms.
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THEOREM 10. Let R=8,DS, where S1, 8, are simple rings and let
G be a finite group of Jordan automorphisms of R such that R has no
|G| ~torsion.

(i) If G does not consist solely of automorphisms, then the fixed

ring is a direct sum of at most 3|G|/2 simple Jordan rings.

(i1) If 8, is not G—invariant, then the fized ring is a direct sum

of at most |G|/2 simple Jordan rings.

(ii1) If the hypotheses of (i) and (ii) are both satisfied and (g

G|8:6=8,) # {g€G|g is an automorphism}, then the fixed ring
is a direct sum of at most |G| /4 simple Jordan rings.

Proof. Let K={g€G|8,¢=8,} and Let H= {g&G|g is an automor-
phism of R.} We first prove:

(ii) Suppose S; is not G-invariant. Then the index of K in G is
equal to 2. As in the proof of Lemma 9, R6=,;S,X and by Theorem
8, S,X is a direct sum of at most |K|=|G]|/2 simple Jordan rings.

(i) We may assume that S; is G-invariant. Otherwise, we can apply
part (ii). Since G does not consist solely of automorphisms, its action
on either S; or S, is not that of associative automorphisms. Therefore
the fixed ring of either §; or S, is a direct sum of at most |G|/2
simple Jordan rings by Theorem 8. The fixed ring of the other
summand is a direct sum of at most |G| simple Jordan rings also by
Theorem 8 Therefore RC is a direct sum of at most |G|/2+|G|=
31G|/2 simple Jordan rings.

(iii) As in the proof of Lemma 9, R6=;S,X (or, equivalently,
R6=;8,%). If the action of K on both S; and S, is that of automor-
phisms then K< H. But the index of K in G is equal to 2. So either
K=H or H=G. But, by hypothesis, neither of these can happen.
Consequently, we may assume that K does not act as automorphism
on S;. By applying Theorem 8, S:X is a direct sum of at most |K|/2
simple Jordan rings. That is, RS is a direct sum of at most |K|/2=
|G| /4 simple Jordan rings.

We remark that when S; is not G-invariant, we need only require
that R has no |G|/2 torsion.

As a final result we prove:

THEOREM 11. Let R be a direct sum of K simple rings and G a
finite group of Jordan automorphism of R such that R has no |G|-
torsion. Then the fixed ring is a direct sum of at most K|G| simple
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Jordan rings. This bound can be achieved only when each summand of
R is G-invariant and G consists solely of automorphisms of R.

K
Proof. Let R=Z,'1 @S;. If each S; is G-invariant then we can apply

Theorem 8 to conclude that RS is a direct sum of at most K|G| simple
Jordan rings. If, in addition, G does not consist solely of automor-
phisms, then the action of G on some S; does not act as automorphisms.
Consequently, S;¢ is a direct sum of at most |G|/2 simple rings.
Therefore RS is a direct sum of at most (K-1) |G|+ |G|/2<KI|G]
simple Jordan rings.

Now assume that some §; is not G-invariant and let Orbit(S;) =
{S#lg=G}. We will show that if R’ is the direct sum of the distinct
elements of Orbit (S;) then the fixed ring R’ under G is a direct sum
of at most |G|/» simple Jordan rings where n=|Orbit(S))|.

Let H={g=G|S® =8;} and let gy, gy, ..., 8,—1 be distinct represen-
tatives of the right cosets of % in G (where gy is the identity) then
R’ =82®S#1D...DSE»1 and =[G : H].

We claim that (R))6= {s-+s81+...+s8a-1|s&S;H}. Clearly any element

of (R’)G is of the form s-+s€1+...+s8-1 where s€SH, Now let g&
G. Then (s-+s81-F...-Lsgn1)e=s8-|- 58184 .. +s8x-18, But there is a b€
H and g;,(0<iy<n—1) so that g=hg;. Consequently, s&#=sh&i =s&:
Similarly, there is A’ H and g;; (0<i;<n—1) so that gig=Hg;,.
Therefore s&1#=s%8; =s2; Continuing, we see that the action of geG
simply permutes the elements of s+s$1+...-+s%-1. We need only show
that {g;, g:1> - 8i,-,} are distinct representatives of the right cosets
of H in G.
- Suppose g;, and g;; are in the same right coset. Then there is a
g;(0<j<n—1) and ky, i, H so that g;,=hg; and g;;=hyg;. From
before, there exists #’,k” so that g,g=h"g; and gg=Ph"g; where
g 8p are distinct in {go, &1, ..., £»-1} . Consequently, g.g=#g; =k hig;
and ggg=h"g;g;. That is, g,=Rk'hgjg' and gz=~h"hsg;g™* which
puts g, and gg in the same right coset of H in G, a contradiction.

Thus, {gip iy ---» £1,-,) arve distinct representatives of the right cosets
of H in G.

We have shown that

(R)C= {s+s81+4...FsEr1| s SH}.
But the mapping of $#Z onto (R’)¢ siven by s—s+sfi+...+s&-1is a
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Jordan isomorphism. That is, (R’)6=;S;7. But by Theorem 8, §,?
is a direct sum of at most |H|=|G|/» simple Jordan rings. This
completes the proof.

References

1. I.N. Herstein, Topics in Ring Theory, U. of Chicago Lecture Notes, 1965.
2. N. Jacobson, Structure and Representations of Jordan Algebras, Amer.
Math. Soc. Colloquium Publ. 39 (1968), Providence.
3. K. McCrimmon, On Herstein’s theorems relating Jordan and associative
algebras, J. of Algebra 13 (1969), 382-392.
4. W.S. Martindale, III and S. Montgomery, Fixed elements of Jordan
automorphisms, Pacific J. Math. 72 (1977), 181-196.
S. Montgomery, Fized Rings of Finite Automorphism Group of Associative
Rings, Lecture Notes in Mathematics 818, Springer-Verlag, 1980.
. J. Osterburg, The Influence of the Algbra of the Group, Comm. in Alg. 7
(13) (1979), 1377-1396.
7. T.A. Sundstrom, Groups of automorphisms of simple rings, J. of Algebra
29 (1974), 555-566.

o

ez}

Northern Illinois University
Dekalb, Ilinois 60115
U.S A





