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JORDAN AUTOMORPHISMS ON DIRECT SUMS OF
SIMPLE RINGS

R.A. HEEG

1. Introduction

Suppose R is a direct sum of K simple rings and G is a group of
automorphisms of R of finite order, IG I. If R has no IG I-torsion
(i e. IGlr=O implies r=O for all rER) then Osterburg has shown
in [6J that the fixed ring of R under G is a direct sum. of at most
IG IK simple rings. We shall prove the analogous result when G
consists of Jordan automorphisms of R.

2. Preliminaries

Let Rand S be rings and T an additive map of R into S. Then
T is called a Jordan homomorphism if (i) (X2)T=(XT)2 and (ii)
(xyx)T=xTyTxT for all x, y in R. Any additive map satisfying (i)
necessarily satisfies (i') (xy+yx)T=xTyT+yTxT and if S has no 2­
torsion (i. e. 25=0 implies s=O for every sES) then additivity and
(i') imply both (i) and (ii) [c. f. Herstein: Topics in Ring TheoryJ.
As can be readily verified, any Jordan homomorphism T also satisfies
(xYZ+zYX)T=xTyTzT+zTyTxT as well as [x, [y, zJJT=[xT, [yT, zTJJ
where [a, bJ=ab-ba.

Clearly every (associative) homomorphism or anti-homomorphism is
a Jordan homomorphism and conversely we have

THEOREM 1. (Herstein [lJ) Every Jordan komomorphism onto a prime
ring is either a komorpkism or anti-homomorpkism.

As a corollary we have

CoROLLARY 2. (Martindale-Montgomery [4J) Let T be a Jordan
isomorphism from R onto S and let P be a prime ideal of R. Then the
image of P under T (denoted pT) is a prime ideal of S and RIP,
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S / pT are either isomorphic or anti-isomorphic.

Suppose R is a non-commutative ring with involution *. Define
1: : R-Rr£;R by r"= (r, r*). Then 1: is a Jordan monomorphism (i. e.
1: is a one-to-one Jordan homomorphism) whose image is not a subring
of R(JjR. Similarly, there are Jordan homomorphisms whose kernels
are not (associative) ideals. This prompts the following definitions.

An additive subgroup A of an a~sociative ring R is called a (special)
Jordan ring if a2, aba are in A whenever a, aEA.

An additive subgroup I of a Jordan ring A is called a (quadratic)
Jordan ideal if x 2, xax, axa, xa+ax are in I whenever xEI and
aEA. We write I~JA.

Every associative ring is a Jordan ring and every ideal of an associa­
tive ring is a Jordan ideal The image of a Jordan homomorphism is
a Jordan ring and the kernel of a Jordan homomorphism is a Jordan
ideal. Also, the image of a Jordan ideal under a Jordan homomorphism
is a Jordan ideal of the image of the Jordan homomorphism.

In [3J, McCrimmon has shown that every non-zero Jordan ideal
of a seiniprime ring contains a nonzero (associative) ideal Using this
fact and Corollary 2, we can characterize Jordan automorphisms on
direct ..products of prime rings. Butnrst we-give some examples.

EXAMPLE 1. Let R be a commutative ring and Main (R) denote the
nXn matrices over R. Then the map M_M" which takes each matrix
to its transpose is an involution and hence a Jordan automorphism.

EXAMPLE 2. Let R be a non-commutative simple ring with involu­
tion*. Define 1: : R(JjR-Rr£;R by 1: (a, b) = (a*, h). Then 1: is a Jordan
automorphism (of order 2) on a direct sum of simple rings which is
neither an automorphism nor anti-antomorphism.

EXAMPLE 3. Let R, * be as in example 2. Define 1: : Rr£;R-R(JjR
by 1:(a, h) = (h, a*). Then 1:, is a Jordan automorphism of order 4.

EXAMPLE 4. Let R, * be as in example 2. Let p be a prime greater
than 2. Let S=R1(JjR2r£; ...(JjRp each Ri=R. Define 1:p : S-S by 1:p
(rh r2, ..., rp) = (r2*, r3*, ..., rp*, rl); then 1:p is a Jordan automorphism
of order p.

We note that in examples:2, 3, 4 we can replace R with any ring
and * with any' Jordan'· automorphism on R in order to obtain a]ord~ln
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automorphism. The following theorem shows that these are the only
Jordan automorphisms on direct products of prime rings.

THEOREM 3. Let R= I1 Sa where each Sa is a prime ring and let g
aeA

be a Jordan automorphism on R. Then for each pEA, there is rEA so
that S/=Sr and the restriction of g to SfJ is either an automorphism
or anti-automorphism.

Proof. SfJ is the intersection of the prime ideals of R which contain
S{3' Therefore the image of SfJ under g is an intersection of prime
ideals of R by Corollary 2. In particular, S/ is an associative ideal
of R.

Let Ks;;A such that S/ contains an element which has a non-zero
entry in Sz if and only if lE K.

Suppose lEK and sESz such that s appears in the llk component of
an element of S/ with s:#:o. Since S/ is an ideal of R, S/SzS;;S/.
Consequently sSzS;;S/. Likewise SzsS;;S/ and .rsyES/ for all x, yE
Sz. Therefore S/ contains an ideal of Sz, which is non-zero by the
primeness of Sz.

So for each 1 E K there is a nonzero ideal 1z of Sz such that Sl
:;;::> I1 lz.

leK

We now show that K contains exactly one element. Suppose l, l'
EK, l:#:l'. Then 1zn11'=0. Thus O=g-l(Izn1z.)=g-l(Iz) ng-1(Iz').
But g-I(IZ), g-I(1z.) are nonzero Jordan ideals of S{3' By McCrimmon's
result there are nonzero ideals A and B of SfJ with AS;;g-I(I) and
BS;;g-I(1z.). But this forces AnB=O which contradicts the primeness
of S{3' Thus K contains exactly one element. This implies that there
is a TEA such that S/S;;Sr'

Applying the same argument to Sr and g-l, we get S/-lS;;S. where
OEA. But this implies that SrS;;S/ and so S/S;;SrS;;S/ which gives
S{3S;;S. forcing p=o. Consequently S/=Sr-

The last statement of the theorem is a consequence of Theorem l.
If R is a ring and G is a group of Jordan automorphisms of R,

then the fixed ring of R under G is {r E R Irg = r for every g E G}
and is denoted RG. If g is an element of any group, then (g> denotes
the subgroup generated by g. In particular, if I is a subring of R
which is g-invariant (i. e. JK = 1) then I <g> denotes the set of elements
of I which are fixed by g.
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Finally, ffwe note another consequence of Theorem 1 which appears
in [4J. Namely, if R is a prime ring, G is a group of Jordan
automorphisms of R, and H is the subgroup of G consisting of
(associative) automorphisms of R, then the index of H in G is either
one or two. In either case, H is normal in G. If H=I=G then G/H
acts as involution on RH.

3. Main Theorem

In this section we consider the action of a finite group of Jordan
automorphisms on a ring which is a direct sum of simple rings. Our
main result (Theorem 11) extends theorems of both Osterburg [6J and
Sundstrom [7]. We start with the result in [6J.

THEOREM 4 [OsterburgJ. Let R be a ring which is the direct sum of
k simple rings and G a finite group of automorphisms of R such that
R has no IG I-torsion. Then the fixed ring of R is a direct sum of I
simple rings where I s;,k IG I.

For involutions, we have the following result proved in [lJ.

THEOREM 5. If R is a simple ring of characteristic not 2 and g is
an involution on R, then the. fixed ring of R is. a simple Jordan ring.

A simple Jordan ring is a Jordan ring which has no nonzero proper
Jordan ideals. Since every associative ideal is a Jordan ideal, any
associative ring which is a simple Jordan ring is a simple ring.
Conversely, if R is a simple ring then R is a simple Jordan ring.
For if R has a nontrivial proper Jordan ideal, A, then by McCrimmon's
result R contains a nonzero associative ideal contained in A. which
contradicts the simplicity of R.

In [7J, Sundstrom considers the situation when G is a finite solvable
group consisting of automorphisms or anti-automorphisms, acting on a
direct sum of simple rings which· has no IG I-torsion. The subgroup
of automorphisms of G is a normal subgroup, H, of index 2 with G/ H
acting on RH as an involution. In general, when G is a finite
solvable group of Jordan automorphisms on a direct sum of simple
rings, the subgroup of automorphisms is not necessarily of index 2 in
G. In example 3, 'l: is a Jordan automorphism of order 4 and the
only automorphism in <'l:>is the identity. When G is not solvable,
the subgroup of automorphisms is not necessarily normal as the next
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example illustrates.

EXAMPLE 5. Let R be a simple non-commutative ring with involution
*. Let S=RffiRffiR and G=<'r, p) where 'rea, b, c) = (a, c*, b) and pea,
b,c)=(c,a,b) then 'rp7:-1 (a, b, c)= (b*, c*, a) so 7:p'r- 1 is not an auto­
morphism and hence the subgroup of automorphisms of G is not normal.

Nevertheless, by using Theorems 3, 4, and 5, we can prove analogous
results for Jordan automorphisms.

We start with
n-I

LEMMA 6. Suppose R= I: ffi Si and g is a Jordan automorphism of
;=0

R such that
(i) gn is the identity

and

Cii) S/ =Si+ICmod n)

Then the fixed ring of R is Jordan isomorphic to So.

Proof. If sESo then sffisgffisg2ffi ... ffisgn-1 is fixed by g. Conversely,
if rER is fixed by g then r is of the form sffisgffisg2EB ... EBsgn-1 where
sESo. So R<g> = {sEBsgEBsg2EB EBsgn-llsESo}. The map from So to
R<g> given by s-sEBsgffis g2 EB EBsgn-1 is a Jordan isomorphism.

We generalize the result in

LEMMA 7. Suppose R is a ring and g is a Jordan automorphism such
n-l .

that R= I:EBlg'. Then the fixed ring of R is Jordan isomorphic to
;=0

the fixed ring of 1 under <gn).

Proof. Clearly, each I g; is gll-invariant so
n-I. n-l .

R<gn> = CI:EBlg,) <gn> = I:EB (lg,) <gn>
;==0 ;=0

By letting S;= (lg;) <gn> and g' be a generator of (g)J(gn) we can
.-1

apply Lemma 6 to I:EBSj and g' to obtain
;=0

n-l. n-l(I:EB(lg,) <gn» <g>/ <gn> = CI:EBSj) <g> ~So=l<gn.>

;=0 ;=0

n-l .
But CI:EB (lg,) <gn» <g> / <gn> = (R<gn» <g> / <gn> =R<g>

i=O
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We now prove

THEOREM 8. Let R be a simple ring and G a finite group of Jordan
automorphisms of R. If R has no IGI-torsion, then the fixed ring of
R is a direct sum of at most IG I simple Jordan rings. If, in addition,
G does not consist solely of automorphisms then the fixed ring of R is
a direct sum of at most IGI/2 simple Jordan rings.

Proof. Let H={gEG)g is an automorphism of R}. If H=G, then
by Theorem 4 we are done.

We now assume H=I=G. Then the index of H in G is equal to 2
and GIH acts as involution of RH. By Theorem 4, RH is a direct sum..
of at most IHI simple rings; so suppose RH=L;EBSi where each Si

;=1

is a simple ring and n~ IHI.
We first consider the case when SI is G/ H-invariant. Either the

action of GIH on SI is that of the identity or that of an involution.
In either case, SIG/ H is a simple Jordan ring.

Now suppose SI is not GIH invariant. Then by Theorem 3, there
is an l~n that the image of SI under the non-identity element of
GIH is SI. In this case GIH acts on SIEBSI and by Lemma 6,
(SIEBSI) G/ H~J SI. Continuing, we see that RG= (RH)G/ H is a direct
sum of at most IHI = IG J/2 sImple Jordan rings.

We now investigate the situation when R is a direct sum of simple
rings, proving first a result about associative automorphisms.

LEMMA 9. Let R=SIEBS2 where SI, S2 are simple rings and let G be
a finite group of automorphisms of R. If R has no IG 112 torsion and
SI is not G-invariant, then the fixed ring of R is a direct sum of at
most IG 112 simple rings.

Proof. Let K= {gEGlsI g=SI}. Then K is normal in G and has
index 2. Consequently,

RG= (RK)G/ K= ((SIEBS2)K)G/ K= (SIKEBS2K)G/ K

with is isomorphic to SIK by Lemma 6. And by Theorem 4, SIK is
a direct sum of at most IK I simple rings.

Therefore, RG is a direct sum of at most IGI/2 simple rings.
We now extend this Lemma by allowing Jordan automorphisms.
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THEOREM 10. Let R=S/(f)S2 where SI> S2 are simple rings and let
G be a finite group of Jordan automorphisms of R such that R has no
IG I-torsion.

( i) If G does not consist solely of automorphisms, then the fixed
ring is a direct sum of at most 31 G 1/2 simple Jordan rings.

(ii) If SI is not G-invariant, then the fixed ring is a direct sum
of at most IG 1/2 simple Jordan rings.

(iii) If the hypotheses of (i) and (ii) are both satisfied and {gE
GISlg=SI} *- {gEGlg is an automorphism}, then the fixed ring
is a direct sum of at most IG1/4 simple Jordan rings.

Proof. Let K= {gEGlslg=SI} and Let H= {gEGlg is an automor­
phism of R.} We first prove:

(ii) Suppose SI is not G-invariant. Then the index of K in G is
equal to 2. As in the proof of Lemma 9, RG=-JSIK and by Theorem
8, SIK is a direct sum of at most IKI = IGI /2 simple Jordan rings.

(i) We may assume that SI is G-invariant. Otherwise, we can apply
part (ii). Since G does not consist solely of automorphisms, its action
on either SI or S2 is not that of associative automorphisms. Therefore
the fixed ring of either SI or S2 is a direct sum of at most IG 1/2
simple Jordan rings by Theorem 8. The fixed ring of the other
summand is a direct sum of at most IG I simple Jordan rings also by
Theorem 8. Therefore RG is a direct sum of at most IG 1/2+ IG I=
31 G I /2 simple Jordan rings.

(iii) As in the proof of Lemma 9, RC=-JSIK (or, equivalently,
RC=-JS2K). If the action of K on both SI and S2 is that of automor­
phisms then K ~H. But the index of K in G is equal to 2. So either
K=H or H=G. But, by hypothesis, neither of these can happen.
Consequently, we may assume that K does not act as automorphism
on Slo By applying Theorem 8, SIK is a direct sum of at most IKI/2
simple Jordan rings. That is, RC is a direct sum of at most IKI/2=
IG I/4 simple Jordan rings.

We remark that when SI is not G-invariant, we need only require
that R has no IG I /2 torsion.

As a final result we prove:

THEOREM 11. Let R be a direct sum of K simple rings and G a
finite group of Jordan automorphism of R such that R has no IG 1­
torsion. Then the fixed ring is a direct sum of at most K IGI simple
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Jordan rings. This bound can be achieved only when each summand of
R is G-invariant and G consists solely of automorphisms of R.

K

Proof. Let R= L;EBSi. If each Si is G-invariant then we can apply
;=1

Theorem 8 to conclude that RG is a direct sum of at most K IG I simple
Jordan rings. If, in addition, G does not consist solely of automor­
phisms, then the action of G on some St does not act as automorphisms.
Consequently, SP is a direct sum of at most IGI/2 simple rings.
Therefore RG is a direct sum of at most (K-l) IG I+ IG I12<K IG I
simple Jordan rings.

Now assume that some St is not G-invariant and let Orbit(St) =
{Stg IgEG}. We will show that if R' is the direct sum of the distinct
elements of Orbit (St) then the fixed ring R' under G is a direct sum
of at most IGI In simple Jordan rings where n= IOrbit (St) I.

Let H= {gEGIStK =St} and let go, gh ..., gn-l be distinct represen­
tatives of the right cosets of h in G (where go is the identity) then
R'=StgoEBSr1EB...EBStgn-1 and n=[G : H].

We claim that (R')G= {s+sgl+ +sgn-!/sEStH}. Clearly any element
of (R')G is of the form S+sgl+ +sgn-1 where sESH. Now let gE
G. Then (S+sgl+ ...+sKn-1)g=sg+sK1g+ ...+sgn-1g. But there is a hE
Hand gio(O:S:io:S:n-l) so that g=hgio' Consequently, sg=shg;o=SK;o·
Similarly, there is h'EH and giI (O:S:i1:S:n-l) so that glg=h'giI.
Therefore Sglg=shfK;l=SK;l Continuing, we see that the action of gEG
simply permutes the elements of S+sgl+ ... +Sgn-1. We need only show
that {gio, gip ..., gin-I} are distinct representatives of the right cosets
of H in G.

Suppose gi" and giP are in the same right coset. Then there is a
gj(O:S:j:S:n-l) and hh h2EH so that gi,,=h1gj and gi~=h2gj. From
before, there exists h', h" so that gag=h'gi" and gpg=h"gi where
ga, gp are distinct in {go, gh ..., gn-l}. Consequently, gag=h'gi"=h'h1gj
and gpg=h"gigj. That is, ga=h'h1gjg-1 and gp=h"h2gjg-1 which
puts ga and gp in the same right coset of H in G, a contradiction.

Thus, {gio, gip ..., gin-I} are distinct representatives of the right cosets
of H in G.

We have shown that

(R')G= {S+SK1+ ...+Sgn-1IsESH}.
But the mapping of StH onto (R')G ~iven by s~s+sK1+... +Sgn-I is a
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Jordan isomorphism. That is, (R')G;;!;JSZH. But by Theorem 8, SZH
is a direct sum of at most IHI = IG I /n simple Jordan rings. This
completes the proof.
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