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On f-Best Approximation in Topological Vector Spaces

by T. D. Narang*

Guru Nanak Der University, Amritsar, India

For a non-empty subset K of a vector space X, the notion of best approximation in K relative
to a real valued function f on X was given by Breckner and Brosowski [1]. Taking X to be a
Hausdorff locally convex topological vector space and f to be a continuous sublinear functional on
X, certain results on best approximation relative to the functional f were proved in [1], [3] and
[6]. Here we give some characterization of f-best approximants in Hausdorff locally convex
topological vector spaces X and discuss some other notions in the theory of best approximation
relative to a functional f on X.

Let X be a Hausdorff locally convex topological vector space, f a real continuous sublinear
functional on X and K a non-empty closed subspace of X. For a given ze&=X, an element k*=K
is said to be f-best approzimation to x in K if

fx—k)=inf{f(x—k) . keK}=fx(z) or f(z—K).

The following proposition characterizes f-best approzimation elements when f is a symmetric (i.e.

f(—z)=f(z) and so f(ax)=|a|f(z) for every scalar a) sublinear functional on X.

Proposition 1. Let z=X. Then ky&Ly, ;(z)=*=K : flz—k¥)=Ffx(z)} if and only if kye=
Ly, [tx+ (1—8)ky] for every scalar &.
Proof. Let k =Ly s(x). Then for all k=K

ko—k
t

Fltz+ (L-Dho—E]=|t|f [x——ko+ ] , £%0

>t f(z—ky)
=fltz+ (1—t)ko—ko].
For t=0, fltz+ (1—)ke—k]>f[t2x+ (1—£)kg—ke] is obvious. Hence ky=Ly ,[tz+ (1—£ky].
Conversely, let ky&Lxk, s[tx+ (1—2) ko] for every scalar ¢£. Then for t=1, k&L ().
In order to give another characterization of f-best approrimation elements, we extend to spaces
X the notion of orthogonality in normed linear spaces.
For z,yEX, z is said to be f-orthogonal to y, written as x| sy if
f@) <flz+ay)
for every scalar a.
z is said to be f-orthogonal to a set KCX, x| /K, if
. z_| sy for all y=K,

Proposition 2, Let f is a symmeiric sublinear functional on X, Then ky=K is f-best approzimation
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to x=X if and only if (z—k) | (K.
Proof of this proposition is similar to that of Lemma 1, 14 {7].

Remark. Lk (z) is empty for every =X if there exists no y=X/ {0} such that y | (K.
Now we introduce the notion of f-coapprorimation in the space X.
An element k=K is said to be f-coapproximation to z=X by elements of K if
fo—B) f(z—k)
for all k=K.
We shall denote by Rg, ,(z), the set of all f-coapprozimations to z in K.
The following proposition gives a relation between f-best approximation and f-coapprozimation for

symmetric sublinear functional on X.
Proposition 3, Ry, ,(z)={ke=K: koEkﬂKLa..,», r(B)}, where (kg x)={az+ (1—a) ky: a scalar}

is the linear manifold spanned by ky and z.
Its proof is similar to that of Proposition 2,1 [2].
The following propositions characterize f-coapprozimation elements for symmetric sublinear

functional f on X: Y

Proposition 4. k=K is f-coapprozimation to x=X if and only if K{ ;(x—k,).
Proof. K| ;(z—ky) (==) flret+al(z—ky)]>f(k), a scalar, k=K

(==) la|fla"k+z—k]>f(k), a0, k&K

(==) fla—k+¥1>f(¥), V=K

(== fla—k")Df(ko—}"), ¥'EK

(==) k&Rx,s(2).

Proposition 5. k.=Rk ;(z) if and only if ke=Rg, s[tx+ (1—t)ky] for all scalars t.

Proposition 6. &Rk, s(z) if and only if for all k&K and |t|>1, flz—kot+t(ky—Fk)]1>
Sko—k).
Proposition 7. k& <=Rx ((z) if and only if for all k&K, (1—t)ky+thERg, ;(z), 01,

Proposition 8. k,&Rx ;(z) implies aky+Bhk=Ry, ;(az+pk) for all k=K, 0+a, 8 scalars.

The proofs of these propositions can be developed on the lines of Propositions 2,2, 2.3, 2.4 and
2.5 respectively of [2].

Next we introduce the notion of strong f-approzimation in the space X.

An element k=K is said to be a strong f-approzimation of = by elements of K if there exists
an r>0 (r<1) such that

flz—ko) +rflkg— )< f(z—k)

for all k=K.

We shall denote the collection of all such k&K by Ls x,s(z). Clearly, strong f-approzimation
element is an f-best approximation element.

The following propositions characterize strong f-approzimation elements for symmetric f:

Proposition 9. k=Lsx, ;(z) if and only if for all kEK, fltz+ (1—t)k—k]1D>f(x—hky)+



rf(ko—k), [t|>1.
Proposition 10. k.=Ls,x,s(z) if and only if ko&Lsx, stz (1—2t) ko) for all scalars t.

Proposition 11. & =Ls i, ((z) if and only if for all k&K, flz—ky(1~8)~tk]>f(xz—ko)+
rf(kg—k) for all scalars t.

Proposition 12, k=Lsk,s(z) if and only if aky+pkeLs x ;(az-+pR), a#0, B scalars, and k=K.

The proof of these propositions can be developed as of propositions 3.1, 3.2, 3.3 and 3.4
respectively of [2].

Next we consider strong f-coapprozimation elements in the space X.

An element k=K is said to be a strong f-coapprozimation of z by elements of K if there exists
r>0(r<1) such that

fx—k) 2 f (ko—k) +1f(xz— ko)

for all k=K. We shall denote the collection of all such %, by Rs x,/(2).

Strong f-coapproximation element is an f-coapprozimation.

Propositions 9, 10, 11 and 12 hold for strong f-coapprozimation (for symmetric f). Proposition 9
holds for all scalars and Proposition 11 holds only for {¢{>1.

The following proposition whose proof is similar to that of 4.1 [2], gives a relation between
strong f-approzimation and strong f-coapproximation for symmetric f.

Proposition 13. Rs,x,s(2)= (k=K : k°E» r}rLs, e 5, (B)), where (ko x) is the linear manifold

generated by ky and zx.

Next we discuss (e)-f-approzimation in spaces X for a given >0,

An element k=K is said te be (¢)-f~approzimation to z=X if

flz—k) < f(z—K) +e.

The set of all such %y is denoted by Lg ;(z,¢).

The following proposition characterizes the set Lx s(z,¢) for a symmetric f.

Proposition 14. k=L ;(x,¢) if and only if ky=Lg ;{tz+ (1—t)ko, €] for all scalars t with
<1,

Its proof is similar to that of Theorem 8.3 {5].

Finally, we introduce simultaneous f-approzimation elements in the space X.

An element kie=K is said to be a simultaneous f-approximation of the pair z,, z,&X if

Mazx {f(x1—ko), f(—"-'z—ko)}::,’;;’{ Maz{f(z\—k), flz.—k)]}.

The following proposition whose proof is similar to that of Theorem 3.1 [4], gives a relationship
between elements of simultaneous f-approzimation and f-best approzimation.

Proposition 15. Every pair z;, z,=K*={yeX : y ]| ;K} has a simultaneous f-approzimation in K

which is also an f-best approximation of the arithemetic mean of x,, x, if x, x; are linearly dependent
and f-orthogonality in X is f-homogeneous i.e. x| (K implies ax | ;K for every scalar a.
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