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Let ¢ be an integer such that in position representation base 5>1 the "digits” 0,1, 2, ..., #-1 form
a finite sequence of a block of these integers. For example, the number 134, 134, 134 written in
a base b>4 repeats the block 134 three times. It is noted that if the block is a palindrome, then
so is any number which is a finite sequence of the block. The question we address is the following:
If n is a given integer and k=a;a;...a, is a given block of digits in base b, then does there exist
a number expressible as a finite sequence of this block in base & positional notation which is
divisible by »? The given theorem and corollaries consider divisibility of this from.

Therem. Let n be a given integer and k=a\a,...a,, v ¢ Z*, be a given block of digits in base
b>1. If (n,b)=1, then there exists an integer m expressible as a finite sequence of block k which

is a multiple of n.
s
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Proof. We will adopt the notational abbreviation of ...k to express the number aa,...¢,2,4;...a,
...tid5...4, Written in base & positional notation with block % repeated s times. Consider the following

sets of integers written in base &:

n+1
S= [k kk,..., ...} and S;= {zsS|z=i (mod n)}, 0<i<n— 1. Since n+1=4# (S)>n=4# {5:/0<i<
r )
n—1}, by Pigeonhole principle we have that their exists two distinct elements k...k and k':je, with
r s r—s s r—s

r>s, in some S; which are thus congruent modulo n. Hence, 7] ((kj) - (Z:Tk)):i:.\k 0...0= (k'._:z)

x &,
r—s
Since (n,5*)=1, we have n|k...k—completing the proof.

Corollary 1. Let block k=a,a,...a, be given as above. If (n,b)=1, then n divides an integer
expressible as n or fewer copies of the given block in base b positional notation.
Proof. In the proof of the theorem, 1<r,s<n+1, and so r—s<(n+1)—1=n=.

Corollary 2. If any block q of digits base b>>1 is given and if n divides none of the numbers of



n
the set {q,qq,...,m}, then (n,b)>1.
Proof. Contraposition of the theorem.

Corollary 3. Let n and k be given as in the theorem. If t<n and (t,b)=1, then there exists an
integer expressible as a finite sequence of block k in positional notation base b which is a multiple of &.
Proof. Apply the Pigeonhole Principle as in the proof of the theorem.

Corollary 4. If n is an odd iteger and 5tn, then n is a divisor of some integer expressible as a
finite sequence of block k=d\d,...d,,v ¢ Z*, 0<d; <9 for each i, in base 10 positional notation.

Proof. Let 5=10. Then by the hypothesis on n, (n, 10)=1 and so the result follows from the
theorem.

An example is offered to demonstrate this curious result. Consider block 1273 in base 10 and
integer 9. Since (9,10)=1 we know, by the theorem or corollary 4, that 9 divides a finite sequence
of this block. You may show that, in fact, 9|127, 312, 731, 273.

The given results may be considered as special divisibility criteria for integers which include, as

particular cases, certain palindromic multiples.



