Extensions of Semi-Closure Spaces

by Bae Hun Park and Woo Chorl Hong

Gyeongsang National University, Jinju, Korea Pusan National University, Pusan, Korea

1. Introduction

In this paper we study an extension of semi-closure spaces and some general properties of this extension.

Let X be any set and P(X) the power set of X. A function $u: P(X) \rightarrow P(X)$ is called a semi-closure structure [3] on X if it satisfies the following four conditions:

- i) $\boldsymbol{u}(\phi) = \phi$,
- ii) $A \subset u(A)$ for each $A \in P(X)$,
- iii) $A \subset B \Rightarrow u(A) \subset u(B)$, for each $A, B \in P(X)$,
- iv) u(A) = u(u(A)), for each $A \in P(X)$.

A pair (X, u) where u is a semi-closure structure on X, is called a semi-closure space. These concepts are generalizations of the more familiar Kuratowski closure operator and topological space, respectively. For a convinience, we shall agree to use u as $\{A \mid u(X-A)=X-A\}$. A set A is called a semi-open (resp. semi-closed) subset of (X, u) if $A \in u$ (resp. $X-A \in u$). Let f be a function from a semi-closure space (X, u) into a semi-closure space (Y, w). If for every $A \in w$, $f^{-1}(A) \in u$ (resp. for every $A \in u$, $f(A) \in w$, then we shall say f is s-continuous (resp. s-open). If for every semi-closed set A (i.e., u(A) = A), w(f(A)) = f(A) then we shall say f is s-closed. Moreover, a bijective function f is called an s-homeomorphism if f is s-continuous and s-open [See, 3].

Definition 1.1. Let (X, u) be a semi-closure space. A collection $\mathcal A$ of subsets of X is called an u-bunch on X if it satisfies the following three conditions:

- i) $\phi \notin \mathcal{A}$ and $\phi \neq \mathcal{A}$,
- ii) $A \in \mathcal{A}$ and $A \subset B \Rightarrow B \in \mathcal{A}$,
- iii) $u(A) \in \mathcal{A} \supset A \in \mathcal{A}$.

The following lemma is easily established.

Lemma 1.2. Let (X, u) be a semi-closure space. Then,

- (1) $\mathcal{A}_u(x) = \{A \subset X | x \in u(A)\}$ is an u-bunch on X for each $x \in X$. Moreover, for every $A \in P(X)$ $\mathcal{A}_u(A) = \{B \subset X | A \subset u(B)\}$ is an u-bunch on X.
 - (2) $\bigcap_{x \in A} \mathcal{A}_{u}(x) = \mathcal{A}_{u}(A)$, for exery $A \in P(X)$.
 - (3) $u(A) = \{x \in X | A \in A_u(x)\}$ for every $A \in P(X)$.

From the above definition and lemma, we show that the collection $\{\mathcal{A}_u(x) \mid x \in X\}$ of u-bunches of (X, u) determined u completly just as u determined all $\mathcal{A}_u(x)$.

2. Extensions of semi-closure spaces

Let $f: X \rightarrow Y$ be an injection; let u be a semi-closure structure on X an k be a semi-closure structure on Y. Then (f, (Y, k)) is called an *extension* [2] of (X, u) if

- i) k(f(X)) = Y and,
- ii) $f(u(A)) = k(f(A)) \cup f(X)$ for every $A \in P(X)$.

Since f is injective, ii) insures that f is s-homeomorphism from (X, u) onto (f(X), k'), where $k'(B) = k(B) \cup f(X)$ for every $B \subset f(X)$, is the semi-closure structure induced on f(X) [3] by the semi-closure structure k on Y. Condition i) insures that f(X) is dense in (Y, k).

A semi-closure (X, u) shall be called an S_0 -space if

$$A_u(x) = A(y) \Rightarrow x = y$$
.

We are now able to state and prove an S_0 -extension of an S_0 -space (X, u).

Theorem 2.1. Let (X, u) be an S_0 -space. Let X^* be the set of all u-bunches on X. Define $k_u: P(X^*) \to P(X^*)$ by $k_u(\alpha) = \{A \in X^* \mid \bigcap \alpha \subset A\}$ for each $\alpha \in P(X^*)$,

$$\varphi_X: X \to X^*$$
 by $\varphi_X(x) = \mathcal{A}_u(x)$ for each $x \in X$.

Then $(\varphi_X, (X^*, k_u))$ is an S_0 -extension of (X, u).

Proof. First we show that k_u is a semi-closure structure on X^* .

- i) Let $A \in X^*$. Then $\phi \notin A$ and $\bigcap \phi \equiv P(X) \not\subset A$. Thus $A \notin k_u(\phi)$, that is, $k_u(\phi) = \phi$.
- ii) Let $\alpha \in P(X^*)$. If $A \in \alpha$, $\cap \alpha \subset A$ and so $A \in k_{\mu}(\alpha)$. Thus, $\alpha \subset k_{\mu}(\alpha)$.
- iii) Let α and β be two elements of $P(X^*)$ with $\alpha \subset \beta$. If $\mathcal{A} \subseteq k_u(\alpha)$, $\cap \alpha \subset \mathcal{A}$ and $\cap \beta \subset \mathcal{A}$, since $\cap \beta \subset \cap \alpha$. Thus, $\mathcal{A} \subseteq k_u(\beta)$, that is, $k_u(\alpha) \subset k_u(\beta)$.
- iv) We shall show that $k_u(k_u(\alpha)) \subset k_u(\alpha)$ for every $\alpha \in P(X^*)$. Suppose that there exists an $A \in X^*$ such that $A \in k_u(k_u(\alpha))$ and $A \notin k_u(\alpha)$. Then $\bigcap \alpha \not\subset A$, there exists $A \in \bigcap \alpha$ such that $A \notin A$. Since $A \in k_u(k_u(\alpha)) \hookrightarrow A \supset \bigcap k_u(\alpha)$, $A \notin \bigcap k_u(\alpha)$. There exists A' in $k_u(\alpha)$ such that $A \notin A'$. Therefore, $A \in \bigcap \alpha \subset A'$ and $A \notin A'$, a contradiction.

By i), iii), and iv), k_u is a semi-closure on X^* .

Next, we show that $(\varphi_X, (X^*, k_u))$ is an extension of (X, u). Clearly, φ_X is an injection into X^* . Moreover,

$$\begin{split} k_{u}(\varphi_{X}(X)) &= k_{u}(\{\mathscr{A}_{u}(x) \mid x \in X\}) \\ &= \{\mathscr{A} \in X^{*} \mid \bigcap_{x \in X} \mathscr{A}_{u}(x) \subset \mathscr{A}\} \\ &= \{\mathscr{A} \in X^{*} \mid \mathscr{A}_{u}(X) \subset \mathscr{A}\}, \ \ \textit{by Lemma 1.2}, \\ &= X^{*} \end{split}$$

so that $\varphi_X(X)$ is dense in X^* .

For each subset A of X,

$$\varphi_X(u(A)) = \varphi_X(\{x \in X | A \in \mathcal{A}_u(x)\})$$
$$= \{\mathcal{A}_u(x) | A \in \mathcal{A}_u(x)\}.$$

On the other hand,

$$k_{u}(\varphi_{X}(A)) \cap \varphi_{X}(X) = k_{u}(\{\mathscr{A}_{u}(x) \mid x \in A\}) \cup \varphi_{X}(X)$$
$$= \{\mathscr{A} \in \varphi_{X}(X) \mid \bigcap_{x \in A} \mathscr{A}_{u}(x)\}$$

$$= \{ \mathcal{A}_{\mu}(x) \mid A \in \mathcal{A}_{\mu}(x) \}, \text{ by Lemma 1.2.}$$

Thus, $\varphi_X(u(A)) = k_u(\varphi_X(A)) \cap \varphi_X(X)$ for each $A \in P(X)$.

Finally, we show that (X^*, k_u) is an S_0 -space. Define $A_{k_u}(\mathcal{A}) = \{\mathfrak{B} \in X^* | \mathcal{A} \in k_u(\mathfrak{B})\}$ for each element \mathcal{A} of X^* . Suppose that $A_{k_u}(\mathcal{A}) = A_{k_u}(\mathfrak{B})$ and $\mathcal{A} \neq \mathfrak{B}$ (i.e., $\mathcal{A} \supset \mathfrak{B}$ or $\mathcal{A} \not\subset \mathfrak{B}$). Then, if $\mathcal{A} \supset \mathfrak{B}$, then $\{\mathcal{A}\} \notin A_{k_u}(\mathfrak{B})$ but $\{\mathcal{A}\} \in A_{k_u}(\mathcal{A})$. Similarly, $\{\mathfrak{B}\} \notin A_{k_u}(\mathcal{A})$ and $\{\mathfrak{B}\} \in A_{k_u}(\mathfrak{B})$. Thus, $A_{k_u}(\mathcal{A}) \neq A_{k_u}(\mathfrak{B})$, a contradiction.

Therefore, $(\varphi_X, (X^*, k_u))$ is an S_0 -extension of (X, u).

We now investigate some general properties of the extension $(\varphi_X, (X^*, k_u))$ of (X, u) which is similar to the case of extensions of nearness spaces [1] and the case of extensions of closure spaces [2].

Theorem 2.2. Let (X, u) and (Y, w) be two S_0 -spaces and let $f: X \rightarrow Y$ be function. Define $f^*: (X^*, k_u) \rightarrow (Y^*, k_w)$ by

$$f^*(A) = \{B \subset Y | f^{-1}(w(B)) \in A\}$$
 for each $A \in X^*$,

where $(\varphi_X, (X^*, k_u))$ and $(\varphi_Y, (Y^*, k_w))$ are the extension of (X, u) and (Y, w), respectively. Then,

- (1) f* is a function,
- (2) $f(A) \subset f^*(A)$ for each $A \in X^*$.
- (3) If f is s-continuous and s-closed, then f^* $(\mathcal{A}_u(x)) = \mathcal{A}_w(f(x))$ for each $x \in X$ and $f^* \circ \varphi_X = \varphi_Y \circ f$.
- (4) If f is s-continuous and s-closed, then f* is s-continuous.

Proof. (1) We shall show that every image of an *u*-bunch on X is a *w*-bunch on Y, that is, $f^*(A) \subseteq Y^*$ for each $A \subseteq X^*$.

- i) $\phi \notin f^*(A)$ and $\phi \neq f^*(A)$ for each $A \in X^*$ are clear.
- ii) If $A \in f^*(A)$ and $A \subset B$, then

$$f^{-1}(w(A)) \in \mathcal{A}, f^{-1}(w(A)) \subset f^{-1}(w(B)) \in \mathcal{A}.$$

Thus $B \in f^*(\mathcal{A})$.

- iii) If $w(A) \in f^*(\mathcal{A})$, $f^{-1}(w(w(A))) \in \mathcal{A} \hookrightarrow f^{-1}(w(A)) \in \mathcal{A} \hookrightarrow A \in f^*(\mathcal{A})$.
- Thus $A \in f^*(A)$. Therefore, f is a function.
- (2) Since $f(\mathcal{A}) = \{f(A) \mid A \in \mathcal{A}\}$ and $f^*(\mathcal{A}) = \{B \subset Y \mid f^{-1}(w(B)) \in \mathcal{A}\}$, for each $B \in f(\mathcal{A})$, there exists $A \in \mathcal{A}$ such that B = f(A). Thus $A \subset f^{-1}(B) \subset f^{-1}(w(B)) \Rightarrow B \in f^*(\mathcal{A})$. Therefore, $f(\mathcal{A}) \subset f^*(\mathcal{A})$ for each $\mathcal{A} \in X^*$.
- (3) Let $A \in f^*(\mathcal{A}_u(x))$. Then $f^{-1}(w(A)) \in \mathcal{A}_u(x) \Leftrightarrow x \in u(f^{-1}(w(A))) \Leftrightarrow f(x) \in f(u(f^{-1}(w(A))) = w(f(f^{-1}(w(A)))) \Leftrightarrow f(x) \in w(w(A)) = w(A) \Leftrightarrow A \in \mathcal{A}_w(f(x))$. Therefore, $f^*(\mathcal{A}_u(x)) = \mathcal{A}_w(f(x))$ for each $x \in X$.

By the above diagram, we now have

$$(f^*\circ\varphi_X)(x)=f^*(\mathcal{A}_u(x))=\mathcal{A}_w(f(x))=(\varphi_Y\circ f)(x),$$

for each $x \in X$.

(4) Let $\alpha \subset X^*$ and let $\mathscr{A} \in k_w(\alpha) = \{\mathscr{A} \in X^* \mid \bigcap \alpha \subset \mathscr{A}\}$. Suppose that $f^*(\mathscr{A}) \notin k_w(f^*(\alpha)) = \{\mathscr{B} \in Y^* \mid \bigcap \alpha \subset \mathscr{A}\}$.

 $\cap f^*(\alpha) \subset \mathfrak{B}$. Then $\cap f^*(\alpha) \subset f^*(\mathscr{A})$ and so for some $A \in \cap f^*(\alpha)$ $A \notin f^*(\mathscr{A})$ (that is, $f^{-1}(w(A)) \in \mathscr{A}$). Since $\cap \alpha \subset \mathscr{A}$, there exists an $\zeta \in \alpha$ such that $f^{-1}(w(A)) \notin \zeta$ (i.e., $A \notin f^*(\zeta)$). This contradicts $A \in f^*(\zeta)$.

References

- 1. H.L. Bentley, Nearness spaces and extensions of topological spaces, Studies in Topology, N. Stavrakas and K. Allen, Ed., Academic Press, New York, 1975, 47-66.
- 2. K.C. Chattopadhyay and W.J. Thron, Extensions of closure spaces, Can. J. Math., Vol. 29, No. 6(1977), 1277-1286.
- 3. Bae Hun Park, Jae Ok Choi and Woo Chorl Hong, On semi-closure structures, J. of Gyeong Sang Nat. Univ., 22 (1983), 1-3.