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1. Introduction

In this paper we study an extension of semi-closure spaces and some general properties of this
extension.

Let X be any set and P(X) the power set of X. A function u : P(X)—P(X) is called a semi-
closure structure [3] on X if it satisfies the following four conditions:

D u($)=9,

il) ACu(4) for each A=sP(X),

iiily ACBDu(A)Cu(B), for each A, B=P(X),

iv) u(A)=u((A)), for each A=P(X).
A pair (X, u) where 2 is a semi-closure structure on X, is called a semi-closure space. These concepts
are generalizations of the more familiar Kuratowski closure operator and topological space, respe-
ctively. For a convinience, we shall agree toc use z as {A|u(X—A)=X—A}. A set A is called a
semi-open (resp. semi-closed) subset of (X,u) if A=u (resp. X—A=u). Let f be a function from a
semi-closure space (X, ) into a semi-closure space (Y,w). If for every Acsw, f'(A)cu (resp.
for every Acu, f(A)ew, then we shall say f is s-continuous (resp. s-opem). If for every semi-
closed set A (i.e., u(A)=A), w(f(A))=F(A) then we shall say f is s-closed. Moreover, a bijective
function f is called an s-homeomorphism if f is s-continuous and s-open [See, 3].

Definition 1.1. Let (X,u) be a semi-closure space. A collection s of subsets of X is called an
u-bunch on X if it satisfies the following three conditions:
1) ¢cEd and g+,
ii) A=d and ACB=>Bed,
i) u(A)ed>Asd.

The following lemma is easily established.

Lemma 1.2, Let (X,u) be a semi-closure space. Then,

(D) d(z)={ACX|z=u(A)} is an u-bunck on X for each z=X. Moreover, for every A=P(X)
A, (A)={BCX|ACu(B)} is an u-bunch on X.

)] zQA A (2)=4,(4), for exery A=P(X),

(8) u(A)={z=X|A=d, (z)} for every A=P(X).

From the above definition and lemma, we show that the collection {#,(x)|z=X} of u-bunches of
(X, u) determined % completly just as u determined all &,(z).



2. Extensions of semi-closure spaces

Let f:X—Y be an injection; let « be a semi-closure structure on X an % be a semi-closure
structure on Y. Then (f, (Y, %)) is called an extension (2] of (X, u) if

D) E(f(X))=Y and,

i) fu(A))=k(f(A)USf(X) for every A=P(X).
Since f is injective, ii) insures that f is s-homeomorphism from (X, %) onto (f(X),k"), where
k¥ (B)=k(B)Uf(X) for every BC f(X), is the semi-closure structure induced on f(X) (3] by the
semi-closure structure % on Y. Condition i) insures that f(X) is dense in (Y, k).

A semi-closure (X, u) shall be called an S,-space if

Ay (@) =d @) Dx=y.

We are now able to state and prove an Sy-extension of an Sy-space (X, u).

Theorem 2.1. Let (X,u) be an Sy-space. Let X* be the set of all u-bunches on X. Define

ko P(X*)>P(X*) by k(a)={d=X*NaCd} for each a=P(X¥),

ox ! X0 X* by px () =d,(x) for each z=X.

Then (px, (X*, k) is an Sy-extension of (X, u).

Proof. First we show that %, is a semi-closure structure on X¥,

i) Let d=X* Then ¢t and Ng=P(X)Zd. Thus d-k,(¢), that is, k. (p)=¢.

ii) Let asP(X*), If d=a, NaCd and so d=k,(a). Thus, aCk,(a).

iii) Let @ and B be two elements of P(X*) with aCB. If d=k, (@), NaCd and NACH, since
NB<Na. Thus, d=k,(p), that is, k,(a) Ck(B).

iv) We shall show that k,(k.(a))Ck.(a) for every acP(X*). Suppose that there exists an
d=X* such that d=k,(k,(a)) and A&k, (@). Then Nazd, there exists A= Na such that AGtd,
Since dek, (k. (@))2dD Nk (@), AE Nk.(a). There exists &’ in ,(a) such that AZs’, Therefore,
AesNaCd’ and AE4’, a contradiction.

By i), ii), iil), and iv), R, is a semi-closure on X¥*,

Next, we show that (px, (X* %,)) is an extension of (X, #). Clearly, ¢x is an injection into X*,
Moreover,

ku(px (X)) =k, ({du(2) |zE=X]))

= [de=X* ngx . (x) o)
={deX*|d.(X)Cd}, by Lemma 1.2,
=X*

so that px(X) is dense in X*,

For each subset A of X,
px(u(A)) =px({zr=X|Acsd,(1)})
= {d.(z) | A=d, (2)}.
On the other hand,
k. (px(A)) Npx(X) =k, ({du(2) |z=A}) Upx (X)

= {de=px(X) I‘QA du(z)}



= {d.(z) | A=, (z)}, by Lemma ].2,
Thus, @x(#(A))=zk.(px(A)) Nex(X) for each A=sP(X).

Finally, we show that (X* k,) is an Sp-space. Define A (f)={BeX*|d=k,(B)] for each
element o of X* Suppose that A, (o) =A4:(B) and J#B (i.e., 4NB or 4ZB). Then, if 4B,
then {d}G A (B) but {d)=A. (). Similarly, {B}E Awn(d) and {B} A, (B). Thus, Al
+ A, (3B), a contradiction.

Therefore, (px, (X*,k,)) is an Sy-extension of (X, #).

We now investigate some general properties of the extension (px, (X*,k.)) of (X,#) which is
similar to the case of extensions of nearness spaces [1] and the case of extensions of closure
spaces (2],

Theorem 2,.2. Let (X,u) and (Y, w) be two Sy-spaces and let f: X—Y be function. Define f* :

(X*, k)= (Y*, ky) by
fE)={BCY|f Y (w(B))=d} for each d=X¥%,
where (px, (X*,k,)) and (py, (Y*, k) are the extension of (X,u) and (Y,w), respectively. Then,

(1) f* is a function,

(2) fl)Cfr(d) for each d=X*,

(8) If f is s-continuous and s-closed, then f* (H.(z))=o,(f(x)) for each z=X and fropx=gpyof.

(4) If f is s-continuous and s-closed, them f* is s-continuous.

Proof. (1) We shall show that every image of an u-bunch on X is a w-bunch on Y, that is,
¥ EY* for each de=X*,

D) ¢FS*(d4) and ¢+ f*(d) for each J=X* are clear.
ii) If Asf*(d) and ACB, then
ftw@)ed, ffw@)cf(wB)ed.
Thus Bef*(4).

i) If w)erf ), ffww@)edaf(wld)edoAdsf*(d).
Thus Ae=f¥*(d). Therefore, f is a function.

(2) Since f(d)={f(4)|Acd} and f*(d)={BCY|f ' (w(B))ed}, for each Bef(d), there
exists A=d such that B=f(A). Thus ACS1(B)Cf(w(B))>B=f*(dl). Therefore, f(sl) Cf*(st)
for each d=X*,

(3) Let Aef*(d.(x)). Then f(w(A))edu(@)zeu(f(wA)af@Ef(W(f(wd))=w
frw@))arf@)eww(l)=wld)oAcd,(f(z)). Therefore, f*(d.(z))=dd.(f(x)) for each
z=X.

(X, 9)—F (Y, w)
124 | } (4 |
k) — Tk )
By the above diagram, we now have
(fFopx) (2) =f* (s, (2)) = (f(@)) = (prof) (2),
for each r=X,
(4) Let aCX* and let d=k, (o) = {d=X*|NaCsd}. Suppose that f*(o)cEk,(f*(a))= (B T*|



NS*(@)CB). Then Nf*@)Cf*(d) and so for some A= f*(a) AES*(L) (that is, f(w(A))
&), Since NaCd, there exists an {=a such that f1(w(A))EL (.e., AES*()). This contr-
adicts A= f*(0).
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