On Super-continuous Functions

Bae Hun Park and Sin Min Kang

Gyeongsang National University, Jinju, Korea

1. Introduction

In 1980, T. Noiri [8] has introduced the concept of strongly \(\theta \)-continuous functions which has been investigated by P.E. Long and L.L. Herrington [4]. Quite recently, B.M. Munshi and D.S. Bassan [6] has introduced a new class of functions, called super-continuous functions, which contains the class of strongly \(\theta \)-continuous functions and is contained in the class of continuous functions.

The purpose of the present note is to investigate some properties of super-continuity for product spaces and the relationships between super-continuity and functions with \(\delta \)-closed graphs due to T. Noiri [8].

2. Preliminaries

Throughout this paper, spaces mean always topological spaces. Let \(S \) be a subset of a space \(X \). The closure of \(S \) and the interior of \(S \) are denoted by \(Cl(S) \) and \(Int(S) \), respectively. A point \(x \in X \) is said to be \(\delta \)-cluster point of \(S \) if \(S \cap Int(Cl(U)) \neq \emptyset \) for each open set \(U \) containing \(x \). The set of all \(\delta \)-cluster points of \(S \) is called the \(\delta \)-closure of \(S \) denoted by \(Cl_\delta(S) \). If \(Cl_\delta(S) = S \), then \(S \) is called \(\delta \)-closed. The complement of a \(\delta \)-closed set is called \(\delta \)-open.

Definition 2.1. A function \(f : X \to Y \) is said to be super-continuous [6] (resp. \(\delta \)-continuous [8] and \(\theta \)-continuous [2]) if for each \(x \in X \) and each open neighborhood \(V \) of \(f(x) \), there exists an open neighborhood \(U \) of \(x \) such that \(f(Int(Cl(U))) \subseteq V \) (resp. \(f(Int(Cl(U))) \subseteq Int(Cl(V)) \) and \(f(Cl(U)) \subseteq Cl(V) \)).

It is obvious that super-continuity implies \(\delta \)-continuity. However, the converse is not true, as the following examples show:

Example 2.2. Let \(X = \{ a, b, c, d \} \) and \(\tau = \{ X, \phi, \{ c \}, \{ a, b \}, \{ a, b, c \} \} \). Let \(Y = \{ p, q, r, w \} \) and \(\sigma = \{ Y, \phi, \{ p \}, \{ r \}, \{ p, q \}, \{ p, r \}, \{ p, q, r \}, \{ p, r, w \} \} \). Define a function \(f : (X, \tau) \to (Y, \sigma) \) as follows:
\[
f(a) = f(b) = q \quad \text{and} \quad f(c) = f(d) = p.
\]
Then \(f \) is \(\delta \)-continuous, but it is not super-continuous.

3. Product spaces

Theorem 3.1. If \(f : X \to Y \) is super-continuous and \(g : Y \to Z \) is continuous, then \(g \circ f : X \to Z \) is super-continuous.

Theorem 3.2. Let \(f : X \to \Pi X \) be a super-continuous function, then \(P_a \circ f \) is super-continuous for each
\(\alpha \in \mathcal{P} \), where \(P_\alpha \) is the projection \(II X_\alpha \) onto \(X_\alpha \).

Proof. This is an immediate consequence of Theorem 3.1.

Theorem 3.3. Let \(f : X \to Y \) be a function and \(g : X \to X \times Y \) the graph function of \(f \) defined by \(g(x) = (x, f(x)) \) for each \(x \in X \). Then \(g \) is super-continuous if and only if \(f \) is super-continuous and \(X \) is semi-regular.

Proof. Suppose that \(g \) is super-continuous. By Theorem 3.2, \(f = P_\alpha g \) is super-continuous and the identity \(P_\alpha g \) is also super-continuous. Thus, for each open set \(V \) in \(X \) and each \(\alpha \in \mathcal{P} \), by Theorem 2.1 of [6], there exists an open set \(U \) in \(X \) such that \(x \in U \subset \text{Int}(\text{Cl}(U)) \subset V \). This shows that \(X \) is semi-regular.

Conversely, suppose that \(f \) is super-continuous. Let \(x \in X \) and \(W \) be an open set in \(X \times Y \) containing \(g(x) \). Then there exist open sets \(G \) and \(V \) in \(X \) and \(Y \), respectively, such that \(g(x) = (x, f(x)) \in G \times V \subset W \). Since \(X \) is semi-regular, there exists an open set \(U \) in \(X \) containing \(x \) such that \(\text{Int}(\text{Cl}(U)) \subset G \) and \(f(\text{Int}(\text{Cl}(U))) \subset V \). Therefore, we have \(g(\text{Int}(\text{Cl}(U))) \subset G \times V \subset W \). This shows that \(g \) is super-continuous.

Theorem 3.4. Let \(f_\alpha : X_\alpha \to Y_\alpha \) be a function for each \(\alpha \in \mathcal{P} \) and \(f : II X_\alpha \to II Y_\alpha \) a function defined by \(f([x_\alpha]) = [f(x_\alpha)] \) for each \([x_\alpha] \in II X_\alpha \). Then \(f \) is super-continuous if and only if \(f_\alpha \) is super-continuous for each \(\alpha \in \mathcal{P} \).

Proof. Suppose that \(f \) is super-continuous. Let \(V_\alpha \) be an open set in \(Y_\alpha \). Then \(V = V_\alpha \times II \{ Y_\beta | \beta \in \mathcal{P} - \{ \alpha \} \} \) is open in \(II Y_\alpha \). By [6], \(f^{-1}(V) = f_\alpha^{-1}(V_\alpha) \times II \{ X_\beta | \beta \in \mathcal{P} - \{ \alpha \} \} \) is \(\delta \)-open in \(II X_\alpha \). It follows easily from [1] and Theorem 6 of [5] that \(f_\alpha^{-1}(V_\alpha) \) is \(\delta \)-open in \(X_\alpha \). Thus \(f_\alpha \) is super-continuous.

Conversely, suppose that \(f_\alpha \) is super-continuous for each \(\alpha \in \mathcal{P} \). Let \(V = V_\alpha \times II \{ Y_\beta | \beta \in \mathcal{P} - \{ \alpha \} \} \) be an open set in \(II Y_\alpha \). Then by [1] and Theorem 5 of [5], \(f^{-1}(V) = f^{-1}(V_\alpha) \times II \{ X_\beta | \beta \in \mathcal{P} - \{ \alpha \} \} \) is \(\delta \)-open in \(II X_\alpha \) since \(f_\alpha^{-1}(V_\alpha) \) is \(\delta \)-open in \(X_\alpha \). This shows that \(f \) is super-continuous.

4. Functions with \(\delta \)-closed graphs

For a function \(f : X \to Y \), the subset \(\{(x, f(x)) | x \in X\} \) of the product space \(X \times Y \) is called the **graph** of \(f \) and denoted by \(G(f) \).

Definition 4.1. The graph \(G(f) \) of a function \(f : X \to Y \) is said to be \(\delta \)-closed [8] if \(G(f) \) is \(\delta \)-closed in \(X \times Y \).

Theorem 4.2. If \(f : X \to Y \) is \(\theta \)-continuous and \(Y \) is Hausdorff, then \(G(f) \) is \(\delta \)-closed in \(X \times Y \).

Proof. Let \((x,y) \in G(f) \). Then \(y \neq f(x) \) and there are open sets \(V \) and \(W \) containing \(f(x) \) and \(y \), respectively, such that \(\text{Int}(\text{Cl}(V)) \cap \text{Int}(\text{Cl}(W)) = \phi \) by Theorem 6 of [7]. Therefore we obtain \(\text{Cl}(V) \cap \text{Int}(\text{Cl}(W)) = \phi \). By \(\theta \)-continuity of \(f \), there exists an open set \(U \) containing \(x \) such that \(f(\text{Cl}(U)) \cap \text{Int}(\text{Cl}(W)) = \phi \). By Lemma of [3], \([\text{Int}(\text{Cl}(U)) \times \text{Int}(\text{Cl}(W))] \cap G(f) = \phi \). This shows that \(G(f) \) is \(\delta \)-closed.

The following Corollary 4.3 follows immediately from Theorem 4.2.

Corollary 4.3. (T. Noiri [8]). If \(f : X \to Y \) is \(\delta \)-continuous and \(Y \) is Hausdorff, then \(G(f) \) is
δ-closed in $X \times Y$.

Theorem 4.4. Let $f : X \rightarrow Y$ be a function with a δ-closed graph. If K is compact in Y (resp. X), then $f^{-1}(K)$ (resp. $f(K)$) is δ-closed in X (resp. Y).

Proof. We prove only the first case, the proof of the second being analogous. Suppose that K is compact in Y. For each $x \in f^{-1}(K)$ and $y \in K$, we have $(x, y) \in G(f)$. Hence there exist open sets $U_x(x)$ and $W(y)$ containing x and y, respectively, such that $\cap \text{Int} \cap (\text{Cl}(U_x(x)) \times \text{Int} \cap (\text{Cl}(W(y))))) \cap G(f) = \phi$. By [3], we obtain $\cap \text{Int}(\text{Cl}(U_x(x))) \cap \text{Int}(\text{Cl}(W(y))) = \phi$. Thus, there exists a finite subcover $\{W(x)\}_{x \in A}$, where A is a finite subset of K. Moreover, the corresponding $U_y(x)$ have the property that $\cap \text{Int}(\text{Cl}(U_y(x))) \cap \text{Int}(\text{Cl}(W(y))) = \phi$. Consider $U = \bigcup_{a \in A} Y_a(x)$. Then U is an open set containing x and we obtain $\cap \text{Int}(\text{Cl}(U)) \cap K \cap f^{-1}(\cup \text{Int}(\text{Cl}(U_y(x))) \cap \text{Int}(\text{Cl}(W(x))) = \phi$. Therefore, $\cap \text{Int}(\text{Cl}(U)) \cap K = \phi$. Thus, we have $\text{Int}(\text{Cl}(U)) \cap f^{-1}(K) = \phi$ and hence $x \in \text{Cl}_f(f^{-1}(K))$. This shows that $f^{-1}(K)$ is δ-closed in X.

Theorem 4.5. Let $f : X \rightarrow Y$ be a function with a δ-closed graph. If Y is compact, then f is super-continuous.

Proof. Let F be any closed set of Y. By Theorem 4.4, $f^{-1}(F)$ is δ-closed in X. By Theorem 2. 1 of [6], f is super-continuous.

Theorem 4.6. Let $f : X \rightarrow Y$ be θ-continuous and Y be Hausdorff.

i) If Y is compact, then f is super continuous.

ii) If Y is nearly-compact, then f is δ-continuous.

Proof. i) By Theorem 4.2 and 4.5, it is obvious.

ii) By Theorem 4.2 and Theorem 5.2 of [8], it is obvious.

References