On Super-continuous Functions

Bae Hun Park and Sin Min Kang Gyeongsang National University, Jinju, Korea

1. Introduction

In 1980, T. Noiri [8] has introduced the concept of strongly θ -continuous functions which has been investigated by P.E. Long and L.L. Herrington [4]. Quite recently, B.M. Munshi and D.S. Bassan [6] has introduced a new class of functions, called super-continuous functions, which contains the class of strongly θ -continuous functions and is contained in the class of continuous functions.

The purpose of the present note is to investigate some properties of super-continuity for product spaces and the relationships between super-continuity and functions with δ -closed graphs due to T. Noiri [8].

2. Preliminaries

Throughout this paper, spaces mean always topological spaces. Let S be a subset of a space X. The closure of S and the interior of S are denoted by Cl(S) and Int(S), respectively. A point $x \in X$ is said to be δ -cluster point of S[9] if $S \cap Int(Cl(U)) \neq \phi$ for each open set U containing x. The set of all δ -cluster points of S is called the δ -closure of S and denoted by $Cl_{\delta}(S)$. If $Cl_{\delta}(S) = S$, then S is called δ -closed. The complement of a δ -closed set is called δ -open.

Definition 2.1. A function $f: X \to Y$ is said to be super-continuous [6] (resp. δ -continuous [8] and θ -continuous [2]) if for each $x \in X$ and each open neighborhood V of f(x), there exists an open neighborhood U of x such that $f(\operatorname{Int}(Cl(U))) \subset V(\operatorname{resp.} f(\operatorname{Int}(Cl(U))) \subset \operatorname{Int}(Cl(V))$ and $f(Cl(U)) \subset Cl(V)$.

It is obvious that super-continuity implies δ -continuity. However, the converse is not true, as the following examples show:

Example 2.2. Let $X = \{a, b, c, d\}$ and $\tau = \{X, \phi, \{c\}, \{a, b\}, \{a, b, c\}\}$. Let $Y = \{p, q, r, w\}$ and $\sigma = \{Y, \phi, \{p\}, \{r\}, \{p, q\}, \{p, r\}, \{p, q, r\}, \{p, r, w\}\}$. Define a function $f : (X, \tau) \to (Y, \sigma)$ as follows: f(a) = f(b) = q and f(c) = f(d) = p.

Then f is δ -continuous, but it is not super-continuous.

3. Product spaces

Theorem 3.1. If $f: X \rightarrow Y$ is super-continuous and $g: Y \rightarrow Z$ is continuous, then $g \circ f: X \rightarrow Z$ is super-continuous.

Theorem 3.2. Let $f: X \rightarrow \Pi X_{\alpha}$ be a super-continuous function, then $P_{\alpha} \circ f$ is super-continuous for each

 $\alpha \in V$, where P_{α} is the projection ΠX_{α} onto X_{α} .

Proof. This is an immediate consequence of Theorem 3.1.

Theorem 3.3. Let $f: X \rightarrow Y$ be a function and $g: X \rightarrow X \times Y$ the graph function of f defined by g(x) = (x, f(x)) for each $x \in X$. Then g is super-continuous if and only if f is super-continuous and X is semi-regular.

Proof. Suppose that g is super-continuous. By Theorem 3.2, $f=P_y\circ g$ is super-continuous and the identity $P_x\circ g$ is also super-continuous. Thus, for each open set V in X and each $x\in V$, by Theorem 2. 1 of [6], there exists an open set U in X such that $x\in U\subset Int(Cl(U))\subset V$. This shows that X is semi-regular.

Conversely, suppose that f is super-continuous. Let $x \in X$ and W be an open set in $X \times Y$ containing g(x). Then there exist open sets G and V in X and Y, respectively, such that $g(x) = (x, f(x)) \in G \times V \subset W$. Since X is semi-regular, there exists an open set U in X containing x such that $Int(Cl(U)) \subset G$ and $f(Int(Cl(U))) \subset V$. Therefore, we have $g(Int(Cl(U))) \subset G \times V \subset W$. This shows that g is super-continuous.

Theorem 3.4. Let $f_{\alpha}: X_{\alpha} \to Y_{\alpha}$ be a function for each $\alpha \in V$ and $f: \Pi X_{\alpha} \to \Pi Y_{\alpha}$ a function defined by $f(\{x_{\alpha}\}) = \{f(x_{\alpha})\}$ for each $\{x_{\alpha}\} \in \Pi X_{\alpha}$. Then f is super-continuous if and only if f_{α} is super-continuous for each $\alpha \in V$.

Proof. Suppose that f is super-continuous. Let V_{α} be an open set in Y_{α} . Then $V = V_{\alpha} \times \Pi\{Y_{\beta} | \beta \in \mathcal{V} - \{\alpha\}\}$ is open in ΠY_{α} . By (6), $f^{-1}(V) = f_{\alpha}^{-1}(V_{\alpha}) \times \Pi\{X_{\beta} | \beta \in \mathcal{V} - \{\alpha\}\}$ is δ -open in ΠX_{α} . It follows easily from (1) and Theorem 6 of (5) that $f_{\alpha}^{-1}(V_{\alpha})$ is δ -open in X_{α} . Thus f_{α} is supercontinuous.

Conversely, suppose that f_{α} is super-continuous for each $\alpha \in \mathbb{F}$. Let $V = V_{\alpha} \times \Pi \{Y_{\beta} | \beta \in \mathbb{F} - \{\alpha\}\}$ be an open set in ΠY_{α} . Then by [1] and Theorem 5 of [5], $f^{-1}(V) = f^{-1}(V_{\alpha}) \times \Pi \{X_{\beta} | \beta \in \mathbb{F} - \{\alpha\}\}$ is δ -open in ΠX_{α} since $f_{\alpha}^{-1}(V_{\alpha})$ is δ -open in X_{α} . This shows that f is super-continuous.

4. Functions with δ -closed graphs

For a function $f: X \to Y$, the subset $\{(x, f(x)) | x \in X\}$ of the product space $X \times Y$ is called the graph of f and denoted by G(f).

Definition 4.1. The graph G(f) of a function $f: X \rightarrow Y$ is said to be δ -closed [8] if G(f) is δ -closed in $X \times Y$.

Theorem 4.2. If $f: X \to Y$ is θ -continuous and Y is Hausdorff, then G(f) is δ -closed in $X \times Y$. **Proof.** Let $(x,y) \notin G(f)$, Then $y \neq f(x)$ and there are open sets V and W containing f(x) and y, respectively, such that $Int(Cl(V)) \cap Int(Cl(W)) = \phi$ by Theorem 6 of [7]. Therefore we obtain $Cl(V) \cap Int(Cl(W)) = \phi$. By θ -continuity of f, there exists an open set U containing x such that $f(Cl(U)) \cap Int(Cl(W)) = \phi$. By Lemma of [3], $[Int(Cl(U)) \times Int(Cl(W))] \cap G(f) = \phi$. This shows that G(f) is δ -closed.

The following Corollary 4.3 follows immediately from Theorem 4.2.

Corollary 4.3. (T. Noiri [8]). If $f: X \rightarrow Y$ is δ -continuous and Y is Hausdorff, then G(f) is

 δ -closed in $X \times Y$.

Theorem 4.4. Let $f: X \rightarrow Y$ be a function with a δ -closed graph. If K is compact in Y (resp. X), then $f^{-1}(K)$ (resp. f(K)) is δ -closed in X (resp. Y).

Proof. We prove only the first case, the proof of the second being analogous. Suppose that K is compact in Y. For each $x \notin f^{-1}(K)$ and $y \in K$, we have $(x,y) \notin G(f)$. Hence there exist open sets $U_y(x)$ and W(y) containing x and y, respectively, such that $(Int(Cl(U_y(x))) \times Int(Cl(W(y)))) \cap G(f) = \phi$. By [3], we obtain $f(Int(Cl(U_y(x)))) \cap Int(Cl(W(y))) = \phi$. Thus, there exists a finite subcover $\{W(y_\alpha) \mid \alpha \in A, \text{ where } A \text{ is a finite} \}$ of K. Moreover, the corresponding $Uy_\alpha(x)$ have the property that $f(\bigcap_{\alpha \in A} Int(Cl(Uy_\alpha(x))) \cap [\bigcup_{\alpha \in A} Int(Cl(W(y_\alpha)))] = \phi$. Consider $U = \bigcap_{\alpha \in A} Uy_\alpha(x)$. Then U is an open set containing x and we obtain $f(Int(Cl(U))) \cap K \subset f(\bigcap_{\alpha \in A} Int(Cl(Uy_\alpha(x))) \cap [\bigcup_{\alpha \in A} W(y_\alpha)] = \phi$. Therefore, $f(Int(Cl(U))) \cap K = \phi$. Thus, we have $Int(Cl(U)) \cap f^{-1}(K) = \phi$ and hence $x \notin Cl_\delta(f^{-1}(K))$. This shows that $f^{-1}(K)$ is δ -closed in X.

Theorem 4.5. Let $f: X \rightarrow Y$ be a function with a δ -closed graph. If Y is compact, then f is supercontinuous.

Proof. Let F be any closed set of Y. By Theorem 4.4, $f^{-1}(F)$ is δ -closed in X. By Theorem 2. 1 of [6], f is super-continuous.

Theorem 4.6. Let $f: X \rightarrow Y$ be θ -continuous and Y be Hausdorff.

- i) If Y is compact, then f is super continuous.
- ii) If Y is nearly-compact, then f is δ -continuous.

Proof. i) By Theorem 4.2 and 4.5, it is obvious.

ii) By Theorem 4.2 and Theorem 5.2 of (8), it is obvious.

References

- 1. J. Dugundji, Topology, Allyn and Bacon, Boston, 1968.
- 2. S.V Formin, Extensions of topological spaces, *Dokl. Akud. Nauk SSSR*, 32(1941), 114-116=Ann. of Math., 44(1943), 471-480.
- 3. P.E. Long, Functions with closed graphs, Amer. Math. Monthly, (8)76(1969), 930-932.
- 4. P.E. Long and L.L. Herrington, Strongly θ -continuous functions, J. Korean Math. Soc., 18(1981), 21-28.
- P.E. Long and L.L., The T_θ-topology and faintly continuous functions, Kyungpook Math. J., 22(1982), 7-14.
- B.M. Munshi and D.S. Bassan, Super-continuous mappings, Indian J. Pure and Applied Math., 13(1982), 229-236.
- 7. T. Noiri, Between continuity and weak continuity, Bollettino Un. Mate. Ital., (4)9(1974), 647-654.
- 8. T. Noiri, On δ-continuous functions, J. Korean Math. Soc., 16 (1980), 161-166.
- 9. N.V. Veličko, H-closed topological spaces, Amer. Math. Soc. Transl., (2)78(1968), 103-118.