Near-rings with IFP

by Sang Keun Lee Gyengsang National University, Jinju, Korea

G. Mason showed the following theorem in [2].

Theorem. (proposition 1 [2]). If a zero symmetric near-ring N is unital then the left regularity, the right regularity and the left strongly regularity are equivalent each other.

In this paper we generalize his theorem to nonzero symmetric near-ring partially.

A near-ring N is a system $(N, +, \cdot)$ such that (N, +) is a group, (N, \cdot) a semigroup and the right distributive law holds. N is regular if for all x in N, there exists a in N with x=xax, and N is right (left) strongly regular if for all x in N, there exists a in N with $x=x^2a(x=ax^2)$ [2]. N is called a right (left) regular if N is regular and right (left) strongly regular [2]. Undefined terminology refer to [1].

Definition 1 [2]. A near-ring N is with IFP if for some a, b in N, ab=0 implies axb=0 for each x in N.

Theorem 2. Let N be a right strongly regular near-ring with IFP. Then N is right regular.

Proof. Assume that $x=x^2a$. It implies that $x^2=x^2ax$. Since N is with IFP, $(x-x^2a)ax=0$, so $xax=x^2a^2x$. Let $b=xa^2$, then $xbx=x^2a^2x=xax=x$ and $x^2b=x^3a^2=x^2a=x$. Thus N is right regular.

Remark If N is a left (or right) strongly regular near-ring, then it is reduced (2). If N is a zero symmetric reduced near-ring, then it is with IFP (2).

Lemma 3. (2). Let N be a left regular with IFP. Then N is right regular.

Theorem 4. Let N be an unital near-ring with IFP. Then the left regularity is equivalent to right regularity.

Proof. Assume that $x=x^2a=xax$ for some a in N. It implies that 0=x-xax=(1-xa)x where 1 is the identity in N. Since N is with IFP, $ax-xa^2x=0$. Thus $ax=xa^2x$. Since $x^2a^2x-x=x^2a^2x-xax=(x^2a-x)ax=0$, $x=x^2a^2x$. It follows that $x^2=(xa^2x)(xa^2x)=xa^2x=ax$. Thus $x=xax=x^2$. Thus $x=xax=x^2$. Hence N is a left regular near-ring.

By lemma, the converse is true.

Lemma 5. Let N be an unital near-ring with IFP. Then the regularity is equivalent the right

Proof. Assume that x=xax for some a in N. It follows that (1-xa)x=0. Since N is with IFP, (1-xa)ax=0 so $ax=xa^2x$. Put $b=a^2x$ then $x^2b=x^2(a^2x)=xax=x$. Hence N is right regular. The converse is true, in general.

Theorem 6. Let N be an unital near-ring with IFP. Then the followings are equivalent.

- 1) N is regular.
- 2) N is right regular.
- 3) N is right strongly regular.
- 4) N is left regular.

Remark. If N is zero symmetric, these are equivalent to left strongly regular (2).

Reference

- 1. G. Pilz, Near-rings, North-Holland, Amsterdam, 1977.
- 2. G. Mason, Strongly Regular Near-rings, Proc. of the Edinburgh Math. Soc. (1980), 23, 27-35.