Near-rings with IFP

by Sang Keun Lee

Gyengsang National University, Jinju, Korea

G. Mason showed the following theorem in [2].

Theorem. [proposition 1 [2]]. If a zero symmetric near-ring N is unital then the left regularity, the right regularity and the left strongly regularity are equivalent each other.

In this paper we generalize his theorem to non-zero symmetric near-ring partially.

A near-ring N is a system $(N, +, \cdot)$ such that $(N, +)$ is a group, (N, \cdot) a monoid and the right distributive law holds. N is regular if for all x in N, there exists a in N with $x = xax$, and N is right (left) strongly regular if for all x in N, there exists a in N with $x = x^2a(x = ax^2)$ [2]. N is called a right (left) regular if N is regular and right (left) strongly regular [2]. Undefined terminology refer to [1].

Definition 1 [2]. A near-ring N is with IFP if for some a, b in N, $ab = 0$ implies $axb = 0$ for each x in N.

Theorem 2. Let N be a right strongly regular near-ring with IFP. Then N is right regular.

Proof. Assume that $x = x^2a$. It implies that $x^2 = x^2ax$. Since N is with IFP, $(x - x^2a)ax = 0$, so $xax = x^2a^2x$. Let $b = xa^2$, then $xb = x^2a^2x = xax = x$ and $x^2b = x^2a^2 = x^2a = x$. Thus N is right regular.

Remark If N is a left (or right) strongly regular near-ring, then it is reduced [2]. If N is a zero symmetric reduced near-ring, then it is with IFP [2].

Lemma 3. [2]. Let N be a left regular with IFP. Then N is right regular.

Theorem 4. Let N be an unital near-ring with IFP. Then the left regularity is equivalent to right regularity.

Proof. Assume that $x = x^2a = xax$ for some a in N. It implies that $0 = x - xax = (1 - xa)x$ where 1 is the identity in N. Since N is with IFP, $ax - xa^2x = 0$. Thus $ax = xa^2$. Since $x^2a^2x - x = x^2a^2x - xax = (x^2a - x)ax = 0$, $x = x^2a^2x$. It follows that $x^2 = (xa^2x)(xa^2x) = xa^2x = ax$. Thus $x = xa^2x = ax$. Thus $x = xa^2 = x$. Hence N is a left regular near-ring.

By lemma, the converse is true.

Lemma 5. Let N be an unital near-ring with IFP. Then the regularity is equivalent the right regularity.

Proof. Assume that $x = xax$ for some a in N. It follows that $(1 - xa)x = 0$. Since N is with IFP, $(1 - xa)ax = 0$ so $ax = xa^2x$. Put $b = a^2x$ then $x^2b = x^2(a^2x) = xax = x$. Hence N is right regular.

The converse is true, in general.
Theorem 6. Let N be an unital near-ring with IFP. Then the followings are equivalent.

1) N is regular.
2) N is right regular.
3) N is right strongly regular.
4) N is left regular.

Remark. If N is zero symmetric, these are equivalent to left strongly regular [2].

Reference